The incorporation of Pt into an iron-nitrogen-carbon(Fe NC)catalyst for the oxygen reduction reaction(ORR)was recently shown to enhance catalyst stability without Pt directly contributing to the ORR activity.However,t...The incorporation of Pt into an iron-nitrogen-carbon(Fe NC)catalyst for the oxygen reduction reaction(ORR)was recently shown to enhance catalyst stability without Pt directly contributing to the ORR activity.However,the mechanistic origin of this stabilisation remained obscure.It is established herein with rotating ring disc experiments that the side product,H_(2)O_(2),which is known to damage FeNC catalysts,is suppressed by the presence of Pt.The formation of reactive oxygen species is additionally inhibited,independent of intrinsic H_(2)O_(2) formation,as determined by electron paramagnetic resonance.Transmission electron microscopy identifies an oxidised Fe-rich layer covering the Pt particles,thus explaining the inactivity of the latter towards the ORR.These insights develop understanding of Fe NC degradation mechanisms during ORR catalysis,and crucially establish the required properties of a precious metal free protective catalyst to improve Fe NC stability in acidic media.展开更多
Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies ope...Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies operated at room temperature it remains unclear whether the IL-associated boosting effect can be maintained at elevated temperature, which is of high relevance for practical applications in low temperature fuel cells. Herein, Fe-N-C catalysts were modified by introducing small amounts of hydrophobic ionic liquid, resulting in boosted electrocatalytic activity towards the alkaline oxygen reduction reaction at room temperature. It is demonstrated that the boosting effect can be maintained and even strengthened when increasing the electrolyte temperature up to 70℃. These findings show for the first time that the incorporation of ionic liquid is a suited method to obtain advanced noble metal-free electrocatalysts that can be applied at operating temperature condition.展开更多
Iron and nitrogen containing carbon catalysts were prepared by the pyrolysis of iron (III) tetramethoxyphenylporphyrin complex adsorbed on as-received as well as nitric acid treated carbon black and employed them as o...Iron and nitrogen containing carbon catalysts were prepared by the pyrolysis of iron (III) tetramethoxyphenylporphyrin complex adsorbed on as-received as well as nitric acid treated carbon black and employed them as oxygen reduction electrodes for hydrogen-oxygen PEM fuel cells. The influence of carbon surface functional groups on the dispersion of active species and electrocatalytic performance is investigated using electron microscopic and electrochemical techniques. The existence of quinone functional groups on the nitric acid treated carbon was evident from X-ray photoelectron spectroscopy and cyclic voltammetry. Rotating disk electrode voltammetry results affirmed the good electrocatalytic activity and stability of pyrolyzed macrocyclic complex adsorbed on nitric acid treated carbon compared to that of as-received carbon. This is ascribed to the greater number of Fe/N active species as well as good dispersion of metal clusters over nitric acid treated carbon support. Fuel cell tests depicted the comparable performance of pyrolyzed complex adsorbed on nitric acid treated carbon with commercial Pt/C at 353 K. Durability measurements performed under fuel cell operating conditions for 120 h indicate the good stability of the catalysts.展开更多
Developing non-precious metal-based inexpensive and highly active electrocatalysts for the oxygen reduction reaction(ORR)in alkaline media is important for fuel cell applications.Herein,we report a simple and effectiv...Developing non-precious metal-based inexpensive and highly active electrocatalysts for the oxygen reduction reaction(ORR)in alkaline media is important for fuel cell applications.Herein,we report a simple and effective synthesis of transition-metal-doped zeolitic imidazolate framework-8(ZIF-8)and carbon nanotube(CNT)composite catalysts(ZIF-8@CNT)prepared via high-temperature pyrolysis at 900℃.The catalysts were characterized using different physicochemical techniques and employed as cathode materials in anion exchange membrane fuel cells(AEMFC).The prepared metal-free(ZNT-900),single-metal-doped(Fe-ZNT-900,Co-ZNT-900)and binary-metal-doped(Fe_(1)Co_(1)-ZNT-900,Fe_(1)Co_(2)-ZNT-900)catalysts had a sufficient amount of N-doping with the presence of FeCo moieties in the carbon skeleton of the latter two materials.N_(2) adsorption–desorption isotherms showed that all the prepared catalysts possess a sufficient Brunauer–Emmett–Teller surface area with more micropores present in ZNT-900,while a combined micro–mesoporous structure was obtained for transition-metal-doped catalysts.Binary-metal-doped catalysts showed the highest number of ORR-active sites(pyridinic-N,pyrrolic-N,graphitic-N,M–Nx)and exhibited a half-wave potential(E_(1/2))of 0.846 and 0.847 V vs.RHE for Fe_(1)Co_(1)-ZNT-900 and Fe_(1)Co_(2)-ZNT-900,respectively,which surpassed that of the commercial Pt/C catalyst(E_(1/2)=0.834 V).In H_(2)–O_(2) AEMFCs,the Fe_(1)Co_(2)-ZNT-900 catalyst delivered a maximum power density(P_(max))of 0.171 W cm^(-2) and current density at 0.5 V(j_(0.5))of 0.326 A cm^(-2),which is very close to that of the Pt/C catalyst(P_(max)=0.215 W cm^(-2) and j_(0.5)=0.359 A cm^(-2)).The prepared ZIF-8@CNT catalysts showed remarkable electrocatalytic ORR activity in 0.1 M KOH solution and fuel cell performance comparable to that of the benchmark Pt/C catalyst.展开更多
A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect o...A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect of heat treatment temperature and flowing of nitrogen gas were investigated. A catalyst with the highest activity can be obtained at 700 ℃. Mn(Ⅱ) ion was changed to MnO in heat treatment, which improved the catalytic activity of the catalyst. Hexamethylenetetramine takes part in the formation of active site of the catalyst as its decomposed gases. The flowing of protective gas takes the decomposed gases out of the tube furnace and brings negative effect on the catalytic activity of the MnHMTA/C catalyst.展开更多
Due to larger atom utilization,unique electronic properties and unsaturated coordination,atomically dispersed non-precious metal catalysts with outstanding performances have received great attention in electrocatalysi...Due to larger atom utilization,unique electronic properties and unsaturated coordination,atomically dispersed non-precious metal catalysts with outstanding performances have received great attention in electrocatalysis.Considering the challenge of serious aggregation,rational synthesis of an atomic catalyst with good dispersion of atoms is paramount to the development of these catalysts.Herein,we report an enhanced confinement strategy to synthesize a catalyst comprised of atomically dispersed Fe supported on porous nitrogen-doped graphitic carbon from the novel and more cross-linkable Melamine-Glyoxal Resin.Densified isolated grid trapping,excessive melamine restricting,and nitrogen anchoring are strongly combined to ensure the final atomic-level dispersion of metal atoms.Experimental studies revealed enhanced kinetics of the obtained catalyst towards oxygen reduction reaction(ORR).This catalytic activity originates from the highly active surface with atomically dispersed iron sites as well as the multi-level three-dimensional structure with fast mass and electron transfer.The enhanced confinement strategy endows the resin-derived atomic catalyst with a great prospect to develop for commercialization in future.展开更多
Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high...Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high performance.NPM-SACs on carbon support(NPM-SACs/CS)are promising because of the carbon substrate with a large surface area,excellent electrical conductivity,and high chemical stability.This review provides an overview of recent developments in NPM-SACs/CS for the electrocatalytic field.First,the state-of-the-art synthesis methods and advanced characterization techniques of NPM-SACs/CS are discussed in detail.Then,the structural adjustment strategy of NPM-SACs/CS for optimizing electrocatalytic performance is introduced concisely.Furthermore,we provide a comprehensive summary of recent advances in developing NPM-SACs/CS for important electrochemical reactions,including carbon dioxide reduction reaction,hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,and nitrogen reduction reaction.In the end,the existing challenges and future opportunities of NPM-SACs/CS in the electrocatalytic field are highlighted.展开更多
Binuclear iron phthalocyanine/reduced graphene oxide(bi-Fe Pc/RGO) nanocomposite with good electrocatalytic activity for ORR in alkaline medium was prepared in one step. High angle annular dark field image scanning tr...Binuclear iron phthalocyanine/reduced graphene oxide(bi-Fe Pc/RGO) nanocomposite with good electrocatalytic activity for ORR in alkaline medium was prepared in one step. High angle annular dark field image scanning transmission electron microscopy(HAADF-STEM) and energy dispersive X-ray spectroscopy element mapping results show bi-Fe Pc was uniformly distributed on RGO. An obvious cathodic peak located at about-0.23 V(vs. SCE) in CV and an onset potential of-0.004 V(vs. SCE) in LSV indicate the as-prepared bi-Fe Pc/RGO nanocomposite possesses high activity which is closed to Pt/C for ORR. The ORR on bi-Fe Pc/RGO nanocomposite follows four-electron transfer pathway in alkaline medium. Compared with Pt/C, there is only a slight decrease(about 0.02 V vs. SCE) for bi-Fe Pc/RGO nanocomposite when the methanol exists. The excellent activity and methanol tolerance in alkaline solutions proves that bi-Fe Pc/RGO nanocomposite could be considered as a promising cathode catalyst for alkaline fuel cells.展开更多
A non-precious metal catalyst CoMe]C for the oxygen reduction reaction is prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride at 600 under nitrogen atmosphere for 2 h. The cata...A non-precious metal catalyst CoMe]C for the oxygen reduction reaction is prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride at 600 under nitrogen atmosphere for 2 h. The catalytic activity of CoMe/C is characterized by the electrochemical linear sweep voltammetry technique. The onset reduction potential of the catalyst is 0.55 V (vs. SCE) at a scanning rate of 5 mV/s in 0.5 mol/L H2SO4 solution. The formation of the ORR activity sites of CoMe/C is facilitated by metallic β- cobalt.展开更多
High-temperature proton exchange membrane fuel cells(HT-PEMFCs)have the unique advantages of fast electrode reaction kinetics,high CO tolerance,and simple water and thermal management at their operating temperature(12...High-temperature proton exchange membrane fuel cells(HT-PEMFCs)have the unique advantages of fast electrode reaction kinetics,high CO tolerance,and simple water and thermal management at their operating temperature(120-300℃),which can effectively solve the hydrogen source problem and help achieve the dual-carbon goal.The catalysts in HT-PEMFCs are mainly Pt-based catalysts,which have good catalytic activity in the oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR).However,in HT-PEMFCs,the high load of platinum-based catalysts to alleviate the limitation of strong adsorption of phosphoric acid(PA)on the platinum surface on activity expression leads to high cost,insufficient activity,decreased activity under long-term operation and carrier corrosion.The present review mainly summarizes the latest research progress of HT-PEMFCs catalysts,systematically analyzes the application of precious metal and non-precious metal catalysts in HT-PEMFCs,and unveils the structure-activity relationship and anti-PA poisoning mechanism.The current challenges and opportunities faced by HT-PEMFCs are discussed,as well as possible future solutions.It is believed that this review can provide some inspiration for the future development of high-performance HT-PEMFC catalysts.展开更多
High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells(PEMFCs),in which Pt-based catalysts employed in the cathodic catalyst layer(CCL)account for the maj...High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells(PEMFCs),in which Pt-based catalysts employed in the cathodic catalyst layer(CCL)account for the major portion of the cost.Although nonprecious metal catalysts(NPMCs)show appreciable activity and stability in the oxygen reduction reaction(ORR),the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL.Therefore,most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport.In this work,the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures,one containing low-Pt-based CCL and NPMCbased dummy catalyst layer(DCL)and the other containing only the NPMC-based CCL.Using Zn-N-C based DCLs of different thickness,the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis.Then,the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy,respectively.Results show that the ratios of local and bulk oxygen transport resistances in NPMCbased CCL are 80%and 20%,respectively,and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs.Furthermore,the activity of active sites per unit in NPMCbased CCLs was determined to be lower than that in the Pt-based CCL,thus explaining worse cell performance of NPMC-based membrane electrode assemblys(MEAs).It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.展开更多
Understanding of the oxygen reduction reaction(ORR)mechanism for single atom catalysts is pivotal for the rational design of non-precious metal cathode materials and the commercialization of fuel cells.Herein,a series...Understanding of the oxygen reduction reaction(ORR)mechanism for single atom catalysts is pivotal for the rational design of non-precious metal cathode materials and the commercialization of fuel cells.Herein,a series of non-precious metal electrocatalysts based on nitrogen-doped bimetallic(Fe and Co)carbide were modeled by density functional theory calculations to predict the corresponding reaction pathways.The study elucidated prior oxygen adsorption on the Fe atom in the dual site and the modifier role of Co atoms to tune the electronic structures of Fe.The reaction activity was highly correlated with the bimetallic center and the coordination environment of the adjacent nitrogen.Interestingly,the preadsorption of*OH resulted in the apparent change of metal atoms'electronic states with the d-band center shifting toward the Fermi level,thereby boosting reaction activity.The result should help promote the fundamental understanding of active sites in ORR catalysts and provide an effective approach to the design of highly efficient ORR catalysts on an atomic scale.展开更多
Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness o...Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions.展开更多
Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer ele...Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.展开更多
Non-precious metal catalysts(NPMCs)are promising low-cost alternatives of Pt/C for oxygen reduction reaction(ORR),which however suffer from serious stability challenge in the devices of proton-exchange-membrane fuel c...Non-precious metal catalysts(NPMCs)are promising low-cost alternatives of Pt/C for oxygen reduction reaction(ORR),which however suffer from serious stability challenge in the devices of proton-exchange-membrane fuel cells(PEMFC).Different from the traditional strategies of increasing the degree of graphitization of carbon substrates and using less Fenton-reactive metals,we prove here that proper regulation of coordination anions is also an effective way to improve the stability of NPMC.N/P cocoordinated Fe-Co dual-atomic-sites are constructed on ZIF-8 derived carbon support using a molecular precursor of C_(34)H_(28)Cl_(2)CoFeP_(2)and a“precursor-preselected”method.A composition of FeCoN_(5)P1 is infered for the dual-atom active site by microscopy and spectroscopy analysis.By comparing with N-coordinated references,we investigate the effect of P-coodination on the ORR catalysis of Fe-Co dual-atom catalysts in PEMFC.The metals in FeCoN_(5)P1 have the lower formation energy than those in the solo N-coordinated active sites of FeCoN6 and FeN_(4),and exhibits a much better fuel cell stability.This anion approach provides a new way to improve the stability of dual-atom catalysts.展开更多
Single cobalt atom is promising non-precious metal catalyst instead of Pt in the oxygen reduction reaction(ORR).However,it is still a great challenge to develop a costeffective,ultrastable and efficent single-atom cob...Single cobalt atom is promising non-precious metal catalyst instead of Pt in the oxygen reduction reaction(ORR).However,it is still a great challenge to develop a costeffective,ultrastable and efficent single-atom cobalt catalyst for ORR,requiring efficient fabrication strategies and robust support to stabilize the single cobalt atom.Here,we prepared a highly active and stable atomically isolated cobalt catalyst via covalent triazine framework(CTF)support with Ketjen Black(KB)hybridization in scale.The prepared single Co catalyst(Co-CTF/KB)possesses high metal loading over 4 wt%and shows superior ORR performance with a half-wave potential(E1/2)of 0.830 V and a limiting current density of 6.14 mA cm-2 as well as high tolerance of methanol in an alkaline medium,which outperforms commercial Pt/C and most non-precious-metal catalysts reported to date.Benefiting from strong stabilization of Co atoms on CTF,Co-CTF/KB shows outstanding stability with only 5 mV negative shifts after 10,000 cycles.Moreover,it also displays high catalytic activity for oxygen evolution reaction(OER),suggesting it is an efficient ORR/OER bifunctional catalyst.The present work provides a facile strategy for preparing single-atom catalysts in bulk quantity and contributes to development of catalysts for electrochemical conversion and storage devices.展开更多
Exploring cost-effective and high-performance oxygen reduction reaction(ORR)electrocatalysts to replace precious platinum-based materials is crucial for developing electrochemic al energy conversion devices but remain...Exploring cost-effective and high-performance oxygen reduction reaction(ORR)electrocatalysts to replace precious platinum-based materials is crucial for developing electrochemic al energy conversion devices but remains a great challenge.Herein,Fe single atoms anchored on nanosheet-linked,defect-rich,highly N-doped 3D porous carbon(Fe-SAs/NLPC)electrocatalysts wer obtained by pyrolyzing saltsealed Fe-doped zeolitic imidazolate frameworks(ZIFs).NaCl functions both as pore-forming agent and closed nanoreactor,which can not only lead to the formation of defects-rich three-dimensional interconnected structures with high N-doping content to expose abundant active sites,promote mass transfer and electron transfer,but also facilitate the effective incorporation of Fe to form Fe-N,active sites without aggregation.These unique characteristics render Fe-SAs/NLPC outstanding electrocatalytic activity for ORR,with one-set potential of 0.96V and high kinetic current density(jK)of 33.32mA/cm^2 in alkaline medium,which surpass the values of most nonprecious-metal catalysts and even commercial Pt/C.展开更多
基金a fellowship from the Alexander von Humboldt foundation。
文摘The incorporation of Pt into an iron-nitrogen-carbon(Fe NC)catalyst for the oxygen reduction reaction(ORR)was recently shown to enhance catalyst stability without Pt directly contributing to the ORR activity.However,the mechanistic origin of this stabilisation remained obscure.It is established herein with rotating ring disc experiments that the side product,H_(2)O_(2),which is known to damage FeNC catalysts,is suppressed by the presence of Pt.The formation of reactive oxygen species is additionally inhibited,independent of intrinsic H_(2)O_(2) formation,as determined by electron paramagnetic resonance.Transmission electron microscopy identifies an oxidised Fe-rich layer covering the Pt particles,thus explaining the inactivity of the latter towards the ORR.These insights develop understanding of Fe NC degradation mechanisms during ORR catalysis,and crucially establish the required properties of a precious metal free protective catalyst to improve Fe NC stability in acidic media.
基金funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (Grant No. 681719)the German Research Foundation (Grant No.GSC1070) for financial support。
文摘Modifying solid catalysts with an ionic liquid layer is an effective approach for boosting the performance of both Pt-based and non-precious metal catalysts toward the oxygen reduction reaction. While most studies operated at room temperature it remains unclear whether the IL-associated boosting effect can be maintained at elevated temperature, which is of high relevance for practical applications in low temperature fuel cells. Herein, Fe-N-C catalysts were modified by introducing small amounts of hydrophobic ionic liquid, resulting in boosted electrocatalytic activity towards the alkaline oxygen reduction reaction at room temperature. It is demonstrated that the boosting effect can be maintained and even strengthened when increasing the electrolyte temperature up to 70℃. These findings show for the first time that the incorporation of ionic liquid is a suited method to obtain advanced noble metal-free electrocatalysts that can be applied at operating temperature condition.
文摘Iron and nitrogen containing carbon catalysts were prepared by the pyrolysis of iron (III) tetramethoxyphenylporphyrin complex adsorbed on as-received as well as nitric acid treated carbon black and employed them as oxygen reduction electrodes for hydrogen-oxygen PEM fuel cells. The influence of carbon surface functional groups on the dispersion of active species and electrocatalytic performance is investigated using electron microscopic and electrochemical techniques. The existence of quinone functional groups on the nitric acid treated carbon was evident from X-ray photoelectron spectroscopy and cyclic voltammetry. Rotating disk electrode voltammetry results affirmed the good electrocatalytic activity and stability of pyrolyzed macrocyclic complex adsorbed on nitric acid treated carbon compared to that of as-received carbon. This is ascribed to the greater number of Fe/N active species as well as good dispersion of metal clusters over nitric acid treated carbon support. Fuel cell tests depicted the comparable performance of pyrolyzed complex adsorbed on nitric acid treated carbon with commercial Pt/C at 353 K. Durability measurements performed under fuel cell operating conditions for 120 h indicate the good stability of the catalysts.
基金The present work was financially supported by the Estonian Research Council(grants PRG723,PRG4 and PRG1509).
文摘Developing non-precious metal-based inexpensive and highly active electrocatalysts for the oxygen reduction reaction(ORR)in alkaline media is important for fuel cell applications.Herein,we report a simple and effective synthesis of transition-metal-doped zeolitic imidazolate framework-8(ZIF-8)and carbon nanotube(CNT)composite catalysts(ZIF-8@CNT)prepared via high-temperature pyrolysis at 900℃.The catalysts were characterized using different physicochemical techniques and employed as cathode materials in anion exchange membrane fuel cells(AEMFC).The prepared metal-free(ZNT-900),single-metal-doped(Fe-ZNT-900,Co-ZNT-900)and binary-metal-doped(Fe_(1)Co_(1)-ZNT-900,Fe_(1)Co_(2)-ZNT-900)catalysts had a sufficient amount of N-doping with the presence of FeCo moieties in the carbon skeleton of the latter two materials.N_(2) adsorption–desorption isotherms showed that all the prepared catalysts possess a sufficient Brunauer–Emmett–Teller surface area with more micropores present in ZNT-900,while a combined micro–mesoporous structure was obtained for transition-metal-doped catalysts.Binary-metal-doped catalysts showed the highest number of ORR-active sites(pyridinic-N,pyrrolic-N,graphitic-N,M–Nx)and exhibited a half-wave potential(E_(1/2))of 0.846 and 0.847 V vs.RHE for Fe_(1)Co_(1)-ZNT-900 and Fe_(1)Co_(2)-ZNT-900,respectively,which surpassed that of the commercial Pt/C catalyst(E_(1/2)=0.834 V).In H_(2)–O_(2) AEMFCs,the Fe_(1)Co_(2)-ZNT-900 catalyst delivered a maximum power density(P_(max))of 0.171 W cm^(-2) and current density at 0.5 V(j_(0.5))of 0.326 A cm^(-2),which is very close to that of the Pt/C catalyst(P_(max)=0.215 W cm^(-2) and j_(0.5)=0.359 A cm^(-2)).The prepared ZIF-8@CNT catalysts showed remarkable electrocatalytic ORR activity in 0.1 M KOH solution and fuel cell performance comparable to that of the benchmark Pt/C catalyst.
文摘A non-precious metal catalyst MnHMTA/C to oxygen reduction reaction was prepared by py- rolyzing a precursor from manganese chloride, hexamethylenetetramine and acetylene black in nitrogen gas atmosphere. The effect of heat treatment temperature and flowing of nitrogen gas were investigated. A catalyst with the highest activity can be obtained at 700 ℃. Mn(Ⅱ) ion was changed to MnO in heat treatment, which improved the catalytic activity of the catalyst. Hexamethylenetetramine takes part in the formation of active site of the catalyst as its decomposed gases. The flowing of protective gas takes the decomposed gases out of the tube furnace and brings negative effect on the catalytic activity of the MnHMTA/C catalyst.
基金financially supported by the Hebei Province Natural Science Foundation Innovation Group Project(B2021203016)the National Natural Science Foundation of China(51674221 and 51704261)+1 种基金the Provincial Graduate Innovation Assistant Project of Yanshan University(023000309)partially supported by the ARC Future Fellowship(FT180100705)of Australia。
文摘Due to larger atom utilization,unique electronic properties and unsaturated coordination,atomically dispersed non-precious metal catalysts with outstanding performances have received great attention in electrocatalysis.Considering the challenge of serious aggregation,rational synthesis of an atomic catalyst with good dispersion of atoms is paramount to the development of these catalysts.Herein,we report an enhanced confinement strategy to synthesize a catalyst comprised of atomically dispersed Fe supported on porous nitrogen-doped graphitic carbon from the novel and more cross-linkable Melamine-Glyoxal Resin.Densified isolated grid trapping,excessive melamine restricting,and nitrogen anchoring are strongly combined to ensure the final atomic-level dispersion of metal atoms.Experimental studies revealed enhanced kinetics of the obtained catalyst towards oxygen reduction reaction(ORR).This catalytic activity originates from the highly active surface with atomically dispersed iron sites as well as the multi-level three-dimensional structure with fast mass and electron transfer.The enhanced confinement strategy endows the resin-derived atomic catalyst with a great prospect to develop for commercialization in future.
基金support from the China Postdoctoral Science Foundation(2022M711553).Y.W.would like to acknowledge the support from the National Natural Science Foundation of China(22171132)the Innovation Fund from Nanjing University(020514913419)+5 种基金the Program for Innovative Talents and Entrepreneurs in Jiangsu(020513006012 and 020513006014),and the National Key R&D Program of China(2002YFB3607000).W.Z.would like to acknowledge the support from the National Natural Science Foundation of China(22176086)Natural Science Foundation of Jiangsu Province(BK20210189)State Key Laboratory of Pollution Control and Resource Reuse(PCRR-ZZ-202106)the Fundamental Research Funds for the Central Universities(021114380183,021114380189 and 021114380199)the Research Funds from the Nanjing Science and Technology Innovation Project for Chinese Scholars Studying Abroad(13006003)the Research Funds from Frontiers Science Center for Critical Earth Material Cycling of Nanjing University,and Research Funds for Jiangsu Distinguished Professor.Y.L.would like to thank the support from the Washington State University startup fund.
文摘Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high performance.NPM-SACs on carbon support(NPM-SACs/CS)are promising because of the carbon substrate with a large surface area,excellent electrical conductivity,and high chemical stability.This review provides an overview of recent developments in NPM-SACs/CS for the electrocatalytic field.First,the state-of-the-art synthesis methods and advanced characterization techniques of NPM-SACs/CS are discussed in detail.Then,the structural adjustment strategy of NPM-SACs/CS for optimizing electrocatalytic performance is introduced concisely.Furthermore,we provide a comprehensive summary of recent advances in developing NPM-SACs/CS for important electrochemical reactions,including carbon dioxide reduction reaction,hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,and nitrogen reduction reaction.In the end,the existing challenges and future opportunities of NPM-SACs/CS in the electrocatalytic field are highlighted.
基金supported by the National Natural Science Foundation of China (21275014, 21375005)the Excellent Young Scientists Fund of NSFC (21322501)+2 种基金the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT& TCD20140309)the Program for New Century Excellent Talents in University (NCET-12-0603)the Beijing Natural Science Foundation Program and Scientific Research Key Program of the Beijing Municipal Commission of Education (KZ201310005001)
文摘Binuclear iron phthalocyanine/reduced graphene oxide(bi-Fe Pc/RGO) nanocomposite with good electrocatalytic activity for ORR in alkaline medium was prepared in one step. High angle annular dark field image scanning transmission electron microscopy(HAADF-STEM) and energy dispersive X-ray spectroscopy element mapping results show bi-Fe Pc was uniformly distributed on RGO. An obvious cathodic peak located at about-0.23 V(vs. SCE) in CV and an onset potential of-0.004 V(vs. SCE) in LSV indicate the as-prepared bi-Fe Pc/RGO nanocomposite possesses high activity which is closed to Pt/C for ORR. The ORR on bi-Fe Pc/RGO nanocomposite follows four-electron transfer pathway in alkaline medium. Compared with Pt/C, there is only a slight decrease(about 0.02 V vs. SCE) for bi-Fe Pc/RGO nanocomposite when the methanol exists. The excellent activity and methanol tolerance in alkaline solutions proves that bi-Fe Pc/RGO nanocomposite could be considered as a promising cathode catalyst for alkaline fuel cells.
基金supported by the Fundamental Research Funds for the Central Universities (No. CDJXS12220002)the Specialized Research Fund for the Doctoral Program of Sichuan University of Science and Engineering (No. 2012RC16)+2 种基金the Opening Project of Key Laboratory of Green Catalysis of Sichuan Institutes of High Education (No. LYJ1206)the National Undergraduate Innovation Training Project (No. 1110611046)Discipline Construction Project of Sichuan University of Science and Engineering
文摘A non-precious metal catalyst CoMe]C for the oxygen reduction reaction is prepared by heat-treating a mechanical mixture of carbon black, melamine and cobalt chloride at 600 under nitrogen atmosphere for 2 h. The catalytic activity of CoMe/C is characterized by the electrochemical linear sweep voltammetry technique. The onset reduction potential of the catalyst is 0.55 V (vs. SCE) at a scanning rate of 5 mV/s in 0.5 mol/L H2SO4 solution. The formation of the ORR activity sites of CoMe/C is facilitated by metallic β- cobalt.
基金financially supported by the Key projects of National Natural Science Foundation of China(U22A20107)the key projects of the Henan Provincial Science and Technology R&D Program Joint Fund(222301420001)+1 种基金the Distinguished Young Scholars Innovation Team of Zhengzhou University(32320275)Higher Education Teaching Reform Research and Practice Project of Henan Province(2021SJGLX093Y).
文摘High-temperature proton exchange membrane fuel cells(HT-PEMFCs)have the unique advantages of fast electrode reaction kinetics,high CO tolerance,and simple water and thermal management at their operating temperature(120-300℃),which can effectively solve the hydrogen source problem and help achieve the dual-carbon goal.The catalysts in HT-PEMFCs are mainly Pt-based catalysts,which have good catalytic activity in the oxygen reduction reaction(ORR)and hydrogen oxidation reaction(HOR).However,in HT-PEMFCs,the high load of platinum-based catalysts to alleviate the limitation of strong adsorption of phosphoric acid(PA)on the platinum surface on activity expression leads to high cost,insufficient activity,decreased activity under long-term operation and carrier corrosion.The present review mainly summarizes the latest research progress of HT-PEMFCs catalysts,systematically analyzes the application of precious metal and non-precious metal catalysts in HT-PEMFCs,and unveils the structure-activity relationship and anti-PA poisoning mechanism.The current challenges and opportunities faced by HT-PEMFCs are discussed,as well as possible future solutions.It is believed that this review can provide some inspiration for the future development of high-performance HT-PEMFC catalysts.
基金the National Key R&D Program of China(Grant No.2021YFB4001303)the National Natural Science Foundation of China(Grant No.21975157)。
文摘High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells(PEMFCs),in which Pt-based catalysts employed in the cathodic catalyst layer(CCL)account for the major portion of the cost.Although nonprecious metal catalysts(NPMCs)show appreciable activity and stability in the oxygen reduction reaction(ORR),the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL.Therefore,most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport.In this work,the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures,one containing low-Pt-based CCL and NPMCbased dummy catalyst layer(DCL)and the other containing only the NPMC-based CCL.Using Zn-N-C based DCLs of different thickness,the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis.Then,the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy,respectively.Results show that the ratios of local and bulk oxygen transport resistances in NPMCbased CCL are 80%and 20%,respectively,and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs.Furthermore,the activity of active sites per unit in NPMCbased CCLs was determined to be lower than that in the Pt-based CCL,thus explaining worse cell performance of NPMC-based membrane electrode assemblys(MEAs).It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.
基金the Joint Fund of the National Natural Science Foundation of China(U1732267).
文摘Understanding of the oxygen reduction reaction(ORR)mechanism for single atom catalysts is pivotal for the rational design of non-precious metal cathode materials and the commercialization of fuel cells.Herein,a series of non-precious metal electrocatalysts based on nitrogen-doped bimetallic(Fe and Co)carbide were modeled by density functional theory calculations to predict the corresponding reaction pathways.The study elucidated prior oxygen adsorption on the Fe atom in the dual site and the modifier role of Co atoms to tune the electronic structures of Fe.The reaction activity was highly correlated with the bimetallic center and the coordination environment of the adjacent nitrogen.Interestingly,the preadsorption of*OH resulted in the apparent change of metal atoms'electronic states with the d-band center shifting toward the Fermi level,thereby boosting reaction activity.The result should help promote the fundamental understanding of active sites in ORR catalysts and provide an effective approach to the design of highly efficient ORR catalysts on an atomic scale.
基金supported by the Youth Innovation Promotion Association(no.2015147)CAS and National Program on Key Basic Research Project(973 Program,2012CB215500)+1 种基金the Outstanding Youngest Scientist FoundationChinese Academy of Sciences(CAS)
文摘Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20933004, 20773096, 50632050, 20433060 and J0730426)the National Hi-Tech R&D Program (2007AA05Z142)
文摘Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.
基金This work was supported by Natural Science Foundation of Beijing Municipality(No.Z200012)the National Natural Science Foundation of China(No.21975010).
文摘Non-precious metal catalysts(NPMCs)are promising low-cost alternatives of Pt/C for oxygen reduction reaction(ORR),which however suffer from serious stability challenge in the devices of proton-exchange-membrane fuel cells(PEMFC).Different from the traditional strategies of increasing the degree of graphitization of carbon substrates and using less Fenton-reactive metals,we prove here that proper regulation of coordination anions is also an effective way to improve the stability of NPMC.N/P cocoordinated Fe-Co dual-atomic-sites are constructed on ZIF-8 derived carbon support using a molecular precursor of C_(34)H_(28)Cl_(2)CoFeP_(2)and a“precursor-preselected”method.A composition of FeCoN_(5)P1 is infered for the dual-atom active site by microscopy and spectroscopy analysis.By comparing with N-coordinated references,we investigate the effect of P-coodination on the ORR catalysis of Fe-Co dual-atom catalysts in PEMFC.The metals in FeCoN_(5)P1 have the lower formation energy than those in the solo N-coordinated active sites of FeCoN6 and FeN_(4),and exhibits a much better fuel cell stability.This anion approach provides a new way to improve the stability of dual-atom catalysts.
基金supported by the Ministry of Science and Technology of China (2012CB933403)the National Natural Science Foundation of China (51425302 and 51302045)the Chinese Academy of Sciences
文摘Single cobalt atom is promising non-precious metal catalyst instead of Pt in the oxygen reduction reaction(ORR).However,it is still a great challenge to develop a costeffective,ultrastable and efficent single-atom cobalt catalyst for ORR,requiring efficient fabrication strategies and robust support to stabilize the single cobalt atom.Here,we prepared a highly active and stable atomically isolated cobalt catalyst via covalent triazine framework(CTF)support with Ketjen Black(KB)hybridization in scale.The prepared single Co catalyst(Co-CTF/KB)possesses high metal loading over 4 wt%and shows superior ORR performance with a half-wave potential(E1/2)of 0.830 V and a limiting current density of 6.14 mA cm-2 as well as high tolerance of methanol in an alkaline medium,which outperforms commercial Pt/C and most non-precious-metal catalysts reported to date.Benefiting from strong stabilization of Co atoms on CTF,Co-CTF/KB shows outstanding stability with only 5 mV negative shifts after 10,000 cycles.Moreover,it also displays high catalytic activity for oxygen evolution reaction(OER),suggesting it is an efficient ORR/OER bifunctional catalyst.The present work provides a facile strategy for preparing single-atom catalysts in bulk quantity and contributes to development of catalysts for electrochemical conversion and storage devices.
基金the National Natural Science Foundation of China(Nos.21701043,21573066,21825201)the Provincial Natural Science Foundation of Hunan,China(Nos.2016JJI1006,2016TP1009)+1 种基金the Hunan Provincial Innovation Foundation for Postgraduate,China(No.CX2018B182)the Open Project Program of Key Laboratory of Low Dimensional Materials & Application Technology(Xiangtan University),Ministry of Education,China(No.KF20180202)。
文摘Exploring cost-effective and high-performance oxygen reduction reaction(ORR)electrocatalysts to replace precious platinum-based materials is crucial for developing electrochemic al energy conversion devices but remains a great challenge.Herein,Fe single atoms anchored on nanosheet-linked,defect-rich,highly N-doped 3D porous carbon(Fe-SAs/NLPC)electrocatalysts wer obtained by pyrolyzing saltsealed Fe-doped zeolitic imidazolate frameworks(ZIFs).NaCl functions both as pore-forming agent and closed nanoreactor,which can not only lead to the formation of defects-rich three-dimensional interconnected structures with high N-doping content to expose abundant active sites,promote mass transfer and electron transfer,but also facilitate the effective incorporation of Fe to form Fe-N,active sites without aggregation.These unique characteristics render Fe-SAs/NLPC outstanding electrocatalytic activity for ORR,with one-set potential of 0.96V and high kinetic current density(jK)of 33.32mA/cm^2 in alkaline medium,which surpass the values of most nonprecious-metal catalysts and even commercial Pt/C.