期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
通信干扰下无线传感器网络中微弱信号检测 被引量:1
1
作者 张燕 曹婷 侯兆阳 《计算机仿真》 2024年第3期415-418,425,共5页
微弱信号检测是保证无线传感器网络高效使用的重要环节,但检测过程易受噪声信号、传感器性能、虚拟信号等因素的干扰,从而导致误检。为了解决上述问题,提出一种通信干扰下无线传感器网络微弱信号检测方法。通过局部投影降噪法剔除信号... 微弱信号检测是保证无线传感器网络高效使用的重要环节,但检测过程易受噪声信号、传感器性能、虚拟信号等因素的干扰,从而导致误检。为了解决上述问题,提出一种通信干扰下无线传感器网络微弱信号检测方法。通过局部投影降噪法剔除信号中的噪声,避免噪声对检测过程产生影响。采用主分量分析算法提取去噪信号的特征,并根据遗传算法优化支持向量参数,将提取的特征输入到向量机中,通过特征的分类完成通信干扰下无线传感器网络微弱信号的检测。实验结果表明,所提方法的信号检测结果与实际结果基本一致,检测时间在30ms内,且抗噪性能强。 展开更多
关键词 局部投影降噪 主分量分析法 累积方差贡献率 特征的分类预测 支持向量机参数优化
下载PDF
基于多尺度正交PCA-LPP流形学习算法的故障特征增强方法 被引量:14
2
作者 张晓涛 唐力伟 +1 位作者 王平 邓士杰 《振动与冲击》 EI CSCD 北大核心 2015年第13期66-70,114,共6页
针对齿轮箱故障声发射信号特征增强问题,提出一种多尺度正交PCA-LPP非线性流形学习特征增强方法,兼顾PCA的全局方差增大变换特性以及LPP的局部非线性特征保持特性,并通过正交化消除投影分量间的冗余信息,使处理之后的齿轮箱故障信号内... 针对齿轮箱故障声发射信号特征增强问题,提出一种多尺度正交PCA-LPP非线性流形学习特征增强方法,兼顾PCA的全局方差增大变换特性以及LPP的局部非线性特征保持特性,并通过正交化消除投影分量间的冗余信息,使处理之后的齿轮箱故障信号内含的故障特征得到增强,一方面增强后信号包络谱中的故障谱线清晰明显,另一方面增强后信号以小波包能量熵为特征量,故障类型的辨识率显著提高,可以达到93.75%。 展开更多
关键词 局部保持投影 主元分析 多尺度分析 正交化 特征增强
下载PDF
融合核主成分分析和最小距离鉴别投影的人脸识别算法 被引量:8
3
作者 刘君 黄燕琪 熊邦书 《计算机工程》 CAS CSCD 北大核心 2016年第4期221-225,234,共6页
针对人脸识别问题,在原有的最小距离鉴别投影算法的基础上,根据核主成分分析(KPCA)方法,提出一种新的融合核主成分分析和最小距离的鉴别投影算法。运用KPCA对高维样本空间进行降维,通过核技巧将样本映射到高维非线性空间,继而在降维后... 针对人脸识别问题,在原有的最小距离鉴别投影算法的基础上,根据核主成分分析(KPCA)方法,提出一种新的融合核主成分分析和最小距离的鉴别投影算法。运用KPCA对高维样本空间进行降维,通过核技巧将样本映射到高维非线性空间,继而在降维后的核子空间上通过鉴别投影方法计算其相应的投影矩阵,采用最近邻分类方法对样本进行分类并最终实现人脸识别。在ORL,FERET和YALE人脸库上的实验结果表明,该算法的识别率优于其他算法,可避免高维矩阵的计算复杂问题,同时定义的核子空间相似度权重也较好地保持了样本之间的近邻关系。 展开更多
关键词 主成分 核主成分 核子空间 鉴别投影 人脸识别 特征提取
下载PDF
秦岭北麓地下水位动态特征与影响因素 被引量:9
4
作者 王浩 段磊 王文科 《西北地质》 CAS CSCD 北大核心 2020年第2期280-288,共9页
地下水是秦岭北麓地区的主要供水水源,研究该区地下水位动态变化特征及其影响因素对地下水资源合理开发及生态环境保护具有重要意义。以秦岭北麓的户县平原区为例,根据地下水埋深、气象、水文资料,结合研究区水文地质条件,运用克里金插... 地下水是秦岭北麓地区的主要供水水源,研究该区地下水位动态变化特征及其影响因素对地下水资源合理开发及生态环境保护具有重要意义。以秦岭北麓的户县平原区为例,根据地下水埋深、气象、水文资料,结合研究区水文地质条件,运用克里金插值方法、主成分投影-聚类耦合模型,研究1980~2019年地下水位时空演变过程,以影响地下水动态的主要因素划分地下水动态类型,分析地下水位动态变化特征。结果表明,1980~2019年地下水位总体呈波动下降趋势;冲积平原和洪积平原年际变幅较大,而冲洪积扇前缘相对较小;研究区地下水动态类型可划分为水文型、降雨入渗-开采型、径流型、降雨入渗-水文-开采型4类;研究区地下水位态变化的主要外在影响因素为降雨、河流径流、开采。 展开更多
关键词 地下水动态 克里金插值 主成分投影-聚类 秦岭北麓
下载PDF
快速核有监督局部保留投影算法 被引量:5
5
作者 张亮 黄曙光 郭浩 《电子与信息学报》 EI CSCD 北大核心 2011年第5期1049-1054,共6页
为了提取样本中的非线性模式,保持其中的流形结构以及减少投影时间,该文提出了一种快速核有监督局部保留投影算法。该算法使用有监督聚类选择法选取训练集的一个子集进行子集核主成分分析,然后在子集核主成分分析形成的子空间中进行有... 为了提取样本中的非线性模式,保持其中的流形结构以及减少投影时间,该文提出了一种快速核有监督局部保留投影算法。该算法使用有监督聚类选择法选取训练集的一个子集进行子集核主成分分析,然后在子集核主成分分析形成的子空间中进行有监督局部保留投影。实验结果表明:相对于有监督局部保留投影算法以及现有的几种流行特征提取方法,新算法能够取得更高的识别率;相对于现有的核投影算法,新算法的投影速度更快。在有些数据集上,只要普通核投影十分之一左右的时间,就能达到相同甚至更高的识别率。 展开更多
关键词 模式识别 特征提取 有监督局部保留投影 子集核主成分分析
下载PDF
基于投影数据主成分分析的图像篡改检测算法 被引量:3
6
作者 赵俊红 康文雄 《计算机工程》 CAS CSCD 2012年第10期203-205,共3页
传统算法处理图像复制-粘贴型篡改问题时速度较慢。为此,提出一种基于投影数据主成分分析(PCA)的图像篡改检测算法。利用分块图像的行、列投影构建图像块投影特征矩阵,通过PCA对其降维,并使用字典排序法进行排序,结合图像块偏移置信距... 传统算法处理图像复制-粘贴型篡改问题时速度较慢。为此,提出一种基于投影数据主成分分析(PCA)的图像篡改检测算法。利用分块图像的行、列投影构建图像块投影特征矩阵,通过PCA对其降维,并使用字典排序法进行排序,结合图像块偏移置信距离判断图像复制-粘贴区域,完成被动取证。实验结果表明,该算法能准确找出篡改区域,与Posucue算法相比速度较快。 展开更多
关键词 图像篡改 图像盲取证 投影变换 投影特征 主成分分析 字典排序
下载PDF
一种结合2DLPP与2DPCA的人脸识别方法 被引量:8
7
作者 齐永锋 火元莲 《西南交通大学学报》 EI CSCD 北大核心 2011年第6期910-916,共7页
为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而... 为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而且能有效地提取人脸的局部特征和全局特征.在ORL、Yale和CAS-PEAL-R1人脸数据库上的实验结果表明,2DLPP-PCA是一种高性能的特征提取方法,当训练样本数为6时,2DLPP-PCA在ORL数据库上的最佳平均识别率达到99%以上. 展开更多
关键词 二维局部保持投影(2DLPP) 二维主成分分析(2DPCA) 特征提取 人脸识别
下载PDF
改进主成分分析与低秩投影的鲁棒性人脸识别 被引量:2
8
作者 斯进 卢涤非 袁莹 《激光杂志》 北大核心 2015年第7期68-71,共4页
针对光照变化、姿态变化等条件下人脸鲁棒性差的难题,提出了一种改进主成分分析与低秩投影的鲁棒性人脸识别算法。首先利用改进主成分分析对人脸图像进行学习,形成低秩稀疏误差矩阵,然后根据稀疏误差图像计算平滑度和边缘,并进行加权实... 针对光照变化、姿态变化等条件下人脸鲁棒性差的难题,提出了一种改进主成分分析与低秩投影的鲁棒性人脸识别算法。首先利用改进主成分分析对人脸图像进行学习,形成低秩稀疏误差矩阵,然后根据稀疏误差图像计算平滑度和边缘,并进行加权实现人脸识别,最后进行仿真实验。结果表明,相对于当前经典人脸识别算法,本文算法获得更高的人脸识别率,并且具有较强的鲁棒性。 展开更多
关键词 主成分分析 人脸识别 低秩投影 特征提取
下载PDF
基于矩阵完备投影的快速主分量分析算法 被引量:2
9
作者 郭志波 杨静宇 +1 位作者 刘华军 严云洋 《中国图象图形学报》 CSCD 北大核心 2007年第4期628-632,共5页
主分量分析是模式识别中经常采用的一种方法,但是由于经典的主分量分析在处理图像矩阵需要将图像展开成向量形式,因而造成其协方差矩阵维数和计算量太大,同时由于没有注意到图像矩阵中像素之间空间相关性,使得抽取的图像特征并不是优秀... 主分量分析是模式识别中经常采用的一种方法,但是由于经典的主分量分析在处理图像矩阵需要将图像展开成向量形式,因而造成其协方差矩阵维数和计算量太大,同时由于没有注意到图像矩阵中像素之间空间相关性,使得抽取的图像特征并不是优秀的,为此提出了一种基于矩阵完备投影的快速主分量分析算法(FMPCA),该算法不仅大大降低了分析过程中的计算量,而且发挥了图像矩阵行和列之间的空间特性,从而提高了整体性能。通过对NUST603、Yale和ORL图像库进行的实验证明,该算法不仅具有快速提取图像特征的能力,而且综合性能优于相应的一些主分量分析方法。 展开更多
关键词 主分量分析 矩阵完备投影 特征抽取 街区距离
下载PDF
基于人体轮廓中线投影的步态特征提取 被引量:1
10
作者 吴清江 许文芳 王青力 《计算机工程》 EI CAS CSCD 北大核心 2006年第24期192-194,共3页
提出了一种新颖且简单有效的步态特征提取方法。用背景差方法得到运动人体的轮廓,对提取出来的轮廓沿中线进行投影,将二维的数据压缩为一维的中线向量。用PCA和SVM相结合的方法对其进行了验证,结果证明了该特征提取方法的有效性及良好... 提出了一种新颖且简单有效的步态特征提取方法。用背景差方法得到运动人体的轮廓,对提取出来的轮廓沿中线进行投影,将二维的数据压缩为一维的中线向量。用PCA和SVM相结合的方法对其进行了验证,结果证明了该特征提取方法的有效性及良好的识别效果。 展开更多
关键词 特征提取 中线投影 主成分分析 支持向量机
下载PDF
阻容类表面贴装元件的炉前检测算法 被引量:1
11
作者 吴晖辉 张宪民 《测试技术学报》 2011年第5期427-433,共7页
针对阻容类元件在结构光下的特征,提出了一种炉前检测算法.利用设计的一种差分算子,提取元件的差分,对差分值作积分投影,然后定位元件位置并提取元件几何特征;引入元件的颜色特征,实现了对阻容类元件缺件、偏移、歪斜和错件等缺陷的检测... 针对阻容类元件在结构光下的特征,提出了一种炉前检测算法.利用设计的一种差分算子,提取元件的差分,对差分值作积分投影,然后定位元件位置并提取元件几何特征;引入元件的颜色特征,实现了对阻容类元件缺件、偏移、歪斜和错件等缺陷的检测.实验结果表明:算法能满足检测系统准确性和实时性的要求. 展开更多
关键词 自动光学检测 贴装元件 特征提取 积分投影
下载PDF
基于特征选择和TrAdaBoost的跨项目缺陷预测方法 被引量:4
12
作者 李莉 石可欣 任振康 《计算机应用》 CSCD 北大核心 2022年第5期1554-1562,共9页
跨项目软件缺陷预测可以解决预测项目中训练数据较少的问题,然而源项目和目标项目通常会有较大的数据分布差异,这降低了预测性能。针对该问题,提出了一种基于特征选择和TrAdaBoost的跨项目缺陷预测方法(CPDP-FSTr)。首先,在特征选择阶段... 跨项目软件缺陷预测可以解决预测项目中训练数据较少的问题,然而源项目和目标项目通常会有较大的数据分布差异,这降低了预测性能。针对该问题,提出了一种基于特征选择和TrAdaBoost的跨项目缺陷预测方法(CPDP-FSTr)。首先,在特征选择阶段,采用核主成分分析法(KPCA)删除源项目中的冗余数据;然后,根据源项目和目标项目的属性特征分布,按距离选出与目标项目分布最接近的候选源项目数据;最后,在实例迁移阶段,通过采用评估因子改进的TrAdaBoost方法,在源项目中找出与目标项目中少量有标签实例分布相近的实例,并建立缺陷预测模型。以F1作为评价指标,与基于特征聚类和TrAdaBoost的跨项目软件缺陷预测(FeCTrA)方法以及基于多核集成学习的跨项目软件缺陷预测(CMKEL)方法相比,CPDP-FSTr的预测性能在AEEEM数据集上分别提高了5.84%、105.42%,在NASA数据集上分别提高了5.25%、85.97%,且其两过程特征选择优于单一特征选择过程。实验结果表明,当源项目特征选择比例和目标项目有类标实例比例分别为60%、20%时,所提CPDP-FSTr能取得较好的预测性能。 展开更多
关键词 跨项目缺陷预测 特征选择 核主成分分析 实例迁移 TrAdaBoost
下载PDF
改进双向二维局部保持投影的人脸识别算法 被引量:2
13
作者 吴斌 王利龙 邵延华 《电子科技大学学报》 EI CAS CSCD 北大核心 2019年第6期904-909,924,共7页
为更好地处理图像小样本问题,且克服二维局部保持投影(2DLPP)算法只能保持数据局部性质的缺陷,通过结合二维主成分分析(2DPCA)和二维线性鉴别分析(2DLDA)的算法特性,提出了一种改进的双向二维局部保持投影的人脸识别算法.首先,引入样本... 为更好地处理图像小样本问题,且克服二维局部保持投影(2DLPP)算法只能保持数据局部性质的缺陷,通过结合二维主成分分析(2DPCA)和二维线性鉴别分析(2DLDA)的算法特性,提出了一种改进的双向二维局部保持投影的人脸识别算法.首先,引入样本类别信息改进权重矩阵,增强2DLPP算法对样本变化的鲁棒性;其次,提出改进2DLPP+2DPCA、2DLPP+2DLDA两种融合算法并分别用于输入样本图像数据的行、列方向特征提取.在特征选择后得到行、列方向上的最优投影;最后,通过对样本数据进行行、列方向投影,利用最近邻分类器对样本数据进行分类并获得在给定数据集上的识别结果.在人脸数据集ORL、YALE和AR上的实验结果表明,该算法在人脸识别性能上总体优于2DPCA、2DLDA、2DLPP、(2D)2PCA、(2D)2LDA、(2D)2PCALDA和(2D)2LPP-PCA等算法. 展开更多
关键词 人脸识别 特征提取 二维线性鉴别分析 二维局部保持投影 二维主成分分析
下载PDF
基于改进型局部保持投影的作物生长特征优化方法
14
作者 郏东耀 胡泊 邹胜雄 《农业工程学报》 EI CAS CSCD 北大核心 2014年第15期206-213,共8页
由于现有的用于农业作物生长监测数据的特征优化方法—局部保持投影(locality preserving projection,LPP)只保留局部信息,同时存在未考虑样本类别信息导致特征提取时误分类,准确率与数据优化效率并不理想。针对上述问题,提出了改进型LP... 由于现有的用于农业作物生长监测数据的特征优化方法—局部保持投影(locality preserving projection,LPP)只保留局部信息,同时存在未考虑样本类别信息导致特征提取时误分类,准确率与数据优化效率并不理想。针对上述问题,提出了改进型LPP方法,并将其用于作物生长特征的优化。首先将样本利用二维主成分分析(two-dimensional principal component analysis,2DPCA)进行初步降维,保留原样本数据中的整体空间信息;然后提出优化的2类子图—聚集子图和分离子图,用来描述不同类别数据之间的关联信息;然后提出优化的2类子图对不同类别数据间的远近关系进行描述;最后采用改进型LPP算法,将数据进一步投影到低维空间,提取样本的局部信息,完成样本特征优化。试验分析表明,改进型LPP具有很好的适应性,最高支持向量机(support vector machine,SVM)分类准确率能够达到96%以上,使精度达到最高的最优维数比主成分分析(principal component analysis,PCA)和二维主成分分析2种算法降低了25%以上,同时算法运行效率比PCA与2DPCA算法提升32.4%与8.3%,整体性能比基本LPP算法更为优越,能够适应农作物多维数据的优化处理。研究结果为现代精准农业信息监测过程中的数据处理与分析提供了参考。 展开更多
关键词 优化 数据处理 监测 生长特征 特征优化 局部保持投影 二维主成分分析
下载PDF
基于改进核范数的2DPCA人脸识别算法研究
15
作者 刘辉 马文 何强 《电视技术》 北大核心 2016年第11期126-131,共6页
传统的二维主成分分析法广泛应用于图像特征提取,为了使此算法更加有效,提出了一种结构化二维算法,即核范数2DPCA算法(N-2-DPCA)。该算法基于核范数重构误差准则,将核范数最优化问题转化为基于F范数的最优化问题,然后通过采用迭代方法... 传统的二维主成分分析法广泛应用于图像特征提取,为了使此算法更加有效,提出了一种结构化二维算法,即核范数2DPCA算法(N-2-DPCA)。该算法基于核范数重构误差准则,将核范数最优化问题转化为基于F范数的最优化问题,然后通过采用迭代方法寻找到最佳投影矩阵,最后运用最小欧氏距离规则识别出待识别人脸的身份。在此基础之上,将N-2-DPCA扩展到基于双边投影的算法(N-B2-DPCA),采用曲线搜索算法寻找到双边投影矩阵,继而进行识别。最后将提出的算法在FERET和Yale B人脸数据库中进行人脸识别评估,实验结果表明所提出的算法与L1-2DPCA相比,重建误差降低了2.19%,识别率提高了2.03%,性能更好。 展开更多
关键词 二维主成分分析法 特征提取 核范数 重建误差 双边投影
下载PDF
基于声学融合特征的说话人分类方法研究
16
作者 杨毅 陈国顺 鲍长春 《计算机工程》 CAS CSCD 2013年第8期1-4,共4页
说话人分类系统的目的是将声音数据分段并按说话人进行分类。对每个说话人提取基于多距离麦克风的多时延特征,可以进一步提高说话人分类系统性能。但随着麦克风个数增加,多时延特征向量维数迅速增长。针对该问题,采用保留特征流形结构... 说话人分类系统的目的是将声音数据分段并按说话人进行分类。对每个说话人提取基于多距离麦克风的多时延特征,可以进一步提高说话人分类系统性能。但随着麦克风个数增加,多时延特征向量维数迅速增长。针对该问题,采用保留特征流形结构并降低计算代价的方法,提出一种基于多距离麦克风融合声学特征的多分量鉴别式保局投影算法,利用支持向量机分类器进行两说话人分类系统的训练和测试,实现会议场景下的说话人分类。实验结果证明,与传统DLPP等算法相比,该算法在大部分数据集上的分类性能较优,可将分类误差率降低至20%以下。 展开更多
关键词 说话人分类 多距离麦克风 多时延特征 声学融合特征 多分量鉴别式保局投影 分类误差率
下载PDF
增强的无监督人脸鉴别技术
17
作者 黄璞 陈才扣 《计算机工程与应用》 CSCD 北大核心 2010年第18期167-169,173,共4页
增强的独立分量分析(EICA)是一种基于样本整体特征的无监督特征抽取方法,并没有考虑样本的局部特征,因此EICA不利于处理人脸识别这类非线性问题的。无监督鉴别投影技术(UDP)用于高维数据压缩,其基本思想是寻找一组有效的投影方向,使得... 增强的独立分量分析(EICA)是一种基于样本整体特征的无监督特征抽取方法,并没有考虑样本的局部特征,因此EICA不利于处理人脸识别这类非线性问题的。无监督鉴别投影技术(UDP)用于高维数据压缩,其基本思想是寻找一组有效的投影方向,使得样本投影后,局部散度最小同时非局部散度最大。UDP同时考虑到样本的局部特征和非局部特征,能够反映样本内在的数据关系,因此UDP能够对样本有效地分类。提出了一种增强的无监督人脸鉴别技术,该方法结合了EICA和UDP的优点,能够:(1)反映样本高阶统计特征;(2)发掘样本内在的几何结构,从而有利于分类。在Yale人脸库和FERET人脸库上的实验验证了该算法的有效性。 展开更多
关键词 局部特征 非局部特征 独立分量分析 无监督投影鉴别 特征抽取 人脸识别
下载PDF
基于局部不变映射的特征描述器算法 被引量:5
18
作者 徐小明 杨丹 +1 位作者 张小洪 周小龙 《自动化学报》 EI CSCD 北大核心 2008年第9期1174-1177,共4页
提出了一种新的基于局部不变映射(Locality preserving projections,LPP)的描述器设计算法.该算法用LPP预先生成一个特征矩阵,接着把特征点邻域内所有点的梯度组成一个高维的梯度向量,然后通过特征矩阵把该梯度向量嵌入到一个低维的流... 提出了一种新的基于局部不变映射(Locality preserving projections,LPP)的描述器设计算法.该算法用LPP预先生成一个特征矩阵,接着把特征点邻域内所有点的梯度组成一个高维的梯度向量,然后通过特征矩阵把该梯度向量嵌入到一个低维的流形空间中,生成一个维数很低的向量,并把它作为该特征点的描述器.所提出的算法能保持描述器之间的几何结构不变:原空间中邻接的描述器映射到低维空间后保持邻接,而不相似的描述器映射后区分度更大,所以该算法所生成的描述器能表现特征点之间的内在关系,具有很强的鲁棒性.通过与SIFT(Scale invariant feature transform),PCA-SIFT的实验比较,此算法更快速,更具鲁棒性. 展开更多
关键词 局部不变映射 主成分分析 特征点 描述器
下载PDF
基于局部保持投影和主元分析的语音情感识别
19
作者 韩志艳 王健 《计算机系统应用》 2016年第10期209-213,共5页
为了提高情感识别的准确性,该文以语音信号为研究对象,提出了一种新型的语音情感识别方法.将局部保持投影算法(LPP)的思想融入到主元分析(PCA)的目标函数中,使得在原始变量空间投影到低维空间的过程中,不仅实现了整体方差的最大化,而且... 为了提高情感识别的准确性,该文以语音信号为研究对象,提出了一种新型的语音情感识别方法.将局部保持投影算法(LPP)的思想融入到主元分析(PCA)的目标函数中,使得在原始变量空间投影到低维空间的过程中,不仅实现了整体方差的最大化,而且保持了局部近邻结构不变,有利于全局和局部特征的全面提取,克服了传统PCA方法只关注全局结构特征而忽略局部特征的缺陷.对比实验结果验证了该方法的可行性和有效性,实现了对喜悦、愤怒、悲伤、恐惧和中性5种人类基本情感的识别,研究成果将为情感识别提供新的研究方法,促进人机交互系统进一步深入发展. 展开更多
关键词 语音信号 情感识别 局部保持投影 主元分析 特征提取 神经网络
下载PDF
基于局部保持投影的神经尖峰电位特征提取与分类 被引量:1
20
作者 尹海兵 刘兆 +1 位作者 刘亚东 胡德文 《计算机应用》 CSCD 北大核心 2010年第9期2559-2562,共4页
神经元尖峰电位的识别和分类,是神经信息处理中的关键环节之一,而尖峰电位的特征提取是识别和分类的重要基础。针对尖峰电位的特征提取和分类,提出一种基于局部保持投影(LPP)的无监督算法,对近邻参数进行了自动识别和选择,使用基于原型... 神经元尖峰电位的识别和分类,是神经信息处理中的关键环节之一,而尖峰电位的特征提取是识别和分类的重要基础。针对尖峰电位的特征提取和分类,提出一种基于局部保持投影(LPP)的无监督算法,对近邻参数进行了自动识别和选择,使用基于原型向量的分布离散度标准,尖峰电位的特征得到充分提取和分离。仿真和实际数据实验结果表明:基于局部保持投影的无监督特征提取和分类算法,比传统主成分分析(PCA)方法能更加有效地实现特征提取和分离。 展开更多
关键词 局部保持投影 电位分类 特征提取 无监督分类 主成分分析
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部