For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertaint...For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.展开更多
Structural reliability is an important method to measure the safety performance of structures under the influence of uncertain factors.Traditional structural reliability analysis methods often convert the limit state ...Structural reliability is an important method to measure the safety performance of structures under the influence of uncertain factors.Traditional structural reliability analysis methods often convert the limit state function to the polynomial form to measure whether the structure is invalid.The uncertain parameters mainly exist in the form of intervals.This method requires a lot of calculation and is often difficult to achieve efficiently.In order to solve this problem,this paper proposes an interval variable multivariate polynomial algorithm based on Bernstein polynomials and evidence theory to solve the structural reliability problem with cognitive uncertainty.Based on the non-probabilistic reliability index method,the extreme value of the limit state function is obtained using the properties of Bernstein polynomials,thus avoiding the need for a lot of sampling to solve the reliability analysis problem.The method is applied to numerical examples and engineering applications such as experiments,and the results show that the method has higher computational efficiency and accuracy than the traditional linear approximation method,especially for some reliability problems with higher nonlinearity.Moreover,this method can effectively improve the reliability of results and reduce the cost of calculation in practical engineering problems.展开更多
Randomness and fuzziness are among the attributes of the influential factors for stability assessment of pile foundation. According to these two characteristics, the triangular fuzzy number analysis approach was intro...Randomness and fuzziness are among the attributes of the influential factors for stability assessment of pile foundation. According to these two characteristics, the triangular fuzzy number analysis approach was introduced to determine the probability-distributed function of mechanical parameters. Then the functional function of reliability analysis was constructed based on the study of bearing mechanism of pile foundation, and the way to calculate interval values of the functional function was developed by using improved interval-truncation approach and operation rules of interval numbers. Afterwards, the non-probabilistic fuzzy reliability analysis method was applied to assessing the pile foundation, from which a method was presented for non- probabilistic fuzzy reliability analysis of pile foundation stability by interval theory. Finally, the probability distribution curve of non- probabilistic fuzzy reliability indexes of practical pile foundation was concluded. Its failure possibility is 0.91%, which shows that the pile foundation is stable and reliable.展开更多
Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability ...Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.展开更多
Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synt...Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synthesis) on the systems consisting of different success failure model units. According to the fundamental method of the unit reliability assessment, the general models of system reliability approximate lower limits are given. Finally, this paper analyses the application of the assessment method by examples, the assessment results are neither conservative nor radical and very satisfactory. The assessment method can be popularized to the systems which have fixed reliability structural models.展开更多
An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence acc...An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.展开更多
A method of analyzing the stability of twin shallow tunnels was presented using both limit analysis with nonlinear failure criterion and reliability theory.In the condition of nonlinear failure criterion,the critical ...A method of analyzing the stability of twin shallow tunnels was presented using both limit analysis with nonlinear failure criterion and reliability theory.In the condition of nonlinear failure criterion,the critical clear distancesof twin shallow tunnels were obtained by analyzing the change of surrounding pressure.A reliability model was established based on limit state equation,and the failure probability was solved by virtue of Monte Carlo method.Safety factor and corresponding clear distance of different safety levels were obtained by introducing a target reliability index.The scope of clear distance for different safety levels is described,which can be used as a supplement and improvement to the design codes of tunnels.展开更多
Probabilistic reliability model established by insufficient data is inaccessible. The convex model was applied to model the uncertainties of variables. A new non-probabilistic reliability model was proposed based on t...Probabilistic reliability model established by insufficient data is inaccessible. The convex model was applied to model the uncertainties of variables. A new non-probabilistic reliability model was proposed based on the robustness of system to uncertainty. The non-probabilistic reliability model,the infinite norm model,and the probabilistic model were used to assess the reliability of a steel beam,respectively. The results show that the resistance is allowed to couple with the action effect in the non-probabilistic reliability model. Additionally,the non-probabilistic reliability model becomes the same accurate as probabilistic model with the increase of the bounded uncertain information. The model is decided by the available data and information.展开更多
Composite laminates are made up of composite single-plies sequence. The plies generally have the same fiber and resin and their difference in fiber orientation results in a difference in various laminates' strengt...Composite laminates are made up of composite single-plies sequence. The plies generally have the same fiber and resin and their difference in fiber orientation results in a difference in various laminates' strength. Tsai-Hill failure criterion as a limiting state function to analyze structural reliability of a composite laminate and estimation theory in order to estimate statistical parameters of effective stress were utilized to construct probability box. Finally, we used the Monte Carlo simulation and FERUM software to calculate the upper and lower bounds of probability of failure.展开更多
In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Conseque...In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures.展开更多
Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In the present research, generation reliability is considered, and a method for its assessment is pr...Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In the present research, generation reliability is considered, and a method for its assessment is proposed using Game Theory (GT) and Neural Networks (NN). Also, due to the stochastic behavior of power markets and generators’ forced outages, Monte Carlo Simulation (MCS) is used for reliability evaluation. Generation reliability focuses merely on the interaction between generation complex and load. Therefore, in the research, based on the behavior of players in the market and using GT, two outcomes are considered: cooperation and non-cooperation. The proposed method is assessed on IEEE-Reliability Test System with satisfactory results. Loss of Load Expectation (LOLE) is used as the reliability index and the results show generation reliability in cooperation market is better than non-cooperation outcome.展开更多
Mechanical and electrical products are more and more widely used in all the fields of the society. With the increase in the degree of automation and miniaturization, the structure of many mechanical and electrical pro...Mechanical and electrical products are more and more widely used in all the fields of the society. With the increase in the degree of automation and miniaturization, the structure of many mechanical and electrical products is becoming more and more complex, and the conditions of the use are also increasingly harsh, and therefore more and more product reliability issues are arising, and the reliability technology is being paid more and more attention to. In this paper, aiming at the mechanical and electtical products, from the three aspects of reliability management, reliability design and analysis, and reliability test and evaluation, the reliability research is preliminary studied.展开更多
Based on the theory of reliability, this paper studies the preventive maintenance strategy of the simulator with incomplete maintenance, and establishes the preventive maintenance model with the aim of simulating the ...Based on the theory of reliability, this paper studies the preventive maintenance strategy of the simulator with incomplete maintenance, and establishes the preventive maintenance model with the aim of simulating the maintenance cost and simulating machine availability. The main contents of this paper are as follows: Firstly, this paper introduces the background and significance of this paper, expatiates the relevant concepts and mathematical foundation of simulator maintenance related theory and reliability maintenance thought, simulator performance degradation law, Weibull parameter estimation method, As the center of the maintenance (RCM) theory of system maintenance decision analysis.展开更多
A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function re...A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function related to order and background value is established.Taking the average relative error function as the objective function,the optimal value of the two parameters is obtained through the optimization method,and the minimum value of the average relative error is determined.The calculation example shows that this method can greatly improve the accuracy of the model and more accurately reflect the relationship between torpedo loading and working reliabilities compared with the traditional GM(1,2)model.展开更多
The former gas pipeline operating pressure transmission determined mostly according to the determined formula into the corresponding pipeline parameters are obtained, and the parameters of the actual pipeline due to m...The former gas pipeline operating pressure transmission determined mostly according to the determined formula into the corresponding pipeline parameters are obtained, and the parameters of the actual pipeline due to many reasons, such as measurement error, production batch, etc., is not a fixed value. This paper on pipeline integrity established limit state equation, using Monte Carlo method to calculate the gas pipeline in different pressures of reliability, according to the API (American Petroleum Institute) 579 recommended target reliability to determine the operating pressure of the different regions, and design coefficient method, the calculated results are compared, results of calculation reliability is more reasonable and improve the delivery pressure of the area, the pipeline safety management provides the basis.展开更多
基金the National Natural Science Foundation of China(51875073).
文摘For high-reliability systems in military,aerospace,and railway fields,the challenges of reliability analysis lie in dealing with unclear failure mechanisms,complex fault relationships,lack of fault data,and uncertainty of fault states.To overcome these problems,this paper proposes a reliability analysismethod based on T-S fault tree analysis(T-S FTA)and Hyper-ellipsoidal Bayesian network(HE-BN).The method describes the connection between the various systemfault events by T-S fuzzy gates and translates them into a Bayesian network(BN)model.Combining the advantages of T-S fault tree modeling with the advantages of Bayesian network computation,a reliability modeling method is proposed that can fully reflect the fault characteristics of complex systems.Experts describe the degree of failure of the event in the form of interval numbers.The knowledge and experience of experts are fused with the D-S evidence theory to obtain the initial failure probability interval of the BN root node.Then,the Hyper-ellipsoidal model(HM)constrains the initial failure probability interval and constructs a HE-BN for the system.A reliability analysismethod is proposed to solve the problem of insufficient failure data and uncertainty in the degree of failure.The failure probability of the system is further calculated and the key components that affect the system’s reliability are identified.The proposedmethod accounts for the uncertainty and incompleteness of the failure data in complex multi-state systems and establishes an easily computable reliability model that fully reflects the characteristics of complex faults and accurately identifies system weaknesses.The feasibility and accuracy of the method are further verified by conducting case studies.
文摘Structural reliability is an important method to measure the safety performance of structures under the influence of uncertain factors.Traditional structural reliability analysis methods often convert the limit state function to the polynomial form to measure whether the structure is invalid.The uncertain parameters mainly exist in the form of intervals.This method requires a lot of calculation and is often difficult to achieve efficiently.In order to solve this problem,this paper proposes an interval variable multivariate polynomial algorithm based on Bernstein polynomials and evidence theory to solve the structural reliability problem with cognitive uncertainty.Based on the non-probabilistic reliability index method,the extreme value of the limit state function is obtained using the properties of Bernstein polynomials,thus avoiding the need for a lot of sampling to solve the reliability analysis problem.The method is applied to numerical examples and engineering applications such as experiments,and the results show that the method has higher computational efficiency and accuracy than the traditional linear approximation method,especially for some reliability problems with higher nonlinearity.Moreover,this method can effectively improve the reliability of results and reduce the cost of calculation in practical engineering problems.
基金Project(50378036) supported by the National Natural Science Foundation of ChinaProject(03JJY5024) supported by the Natural Science Foundation of Hunan Province, China
文摘Randomness and fuzziness are among the attributes of the influential factors for stability assessment of pile foundation. According to these two characteristics, the triangular fuzzy number analysis approach was introduced to determine the probability-distributed function of mechanical parameters. Then the functional function of reliability analysis was constructed based on the study of bearing mechanism of pile foundation, and the way to calculate interval values of the functional function was developed by using improved interval-truncation approach and operation rules of interval numbers. Afterwards, the non-probabilistic fuzzy reliability analysis method was applied to assessing the pile foundation, from which a method was presented for non- probabilistic fuzzy reliability analysis of pile foundation stability by interval theory. Finally, the probability distribution curve of non- probabilistic fuzzy reliability indexes of practical pile foundation was concluded. Its failure possibility is 0.91%, which shows that the pile foundation is stable and reliable.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable.
文摘Using the characteristic of addition of information quantity and the principle of equivalence of information quantity, this paper derives the general conversion formulae of the formation theory method conversion (synthesis) on the systems consisting of different success failure model units. According to the fundamental method of the unit reliability assessment, the general models of system reliability approximate lower limits are given. Finally, this paper analyses the application of the assessment method by examples, the assessment results are neither conservative nor radical and very satisfactory. The assessment method can be popularized to the systems which have fixed reliability structural models.
文摘An improvement method for the combining rule of Dempster evidence theory is proposed. Different from Dempster theory, the reliability of evidences isn't identical; and varies with the event. By weight evidence according to their reliability, the effect of unreliable evidence is reduced, and then get the fusion result that is closer to the truth. An example to expand the advantage of this method is given. The example proves that this method is helpful to find a correct result.
基金Project(51378514)supported by the National Natural Science Foundation of China
文摘A method of analyzing the stability of twin shallow tunnels was presented using both limit analysis with nonlinear failure criterion and reliability theory.In the condition of nonlinear failure criterion,the critical clear distancesof twin shallow tunnels were obtained by analyzing the change of surrounding pressure.A reliability model was established based on limit state equation,and the failure probability was solved by virtue of Monte Carlo method.Safety factor and corresponding clear distance of different safety levels were obtained by introducing a target reliability index.The scope of clear distance for different safety levels is described,which can be used as a supplement and improvement to the design codes of tunnels.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51008100)the Ministry of Science and Technology(Grant No.2011CB013604)+2 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2001EEQ028)the Science and Technology Planning Project of Weihai(Grant No.2010-3-96)the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology(Grant No.HIT.NSRIF.201009)
文摘Probabilistic reliability model established by insufficient data is inaccessible. The convex model was applied to model the uncertainties of variables. A new non-probabilistic reliability model was proposed based on the robustness of system to uncertainty. The non-probabilistic reliability model,the infinite norm model,and the probabilistic model were used to assess the reliability of a steel beam,respectively. The results show that the resistance is allowed to couple with the action effect in the non-probabilistic reliability model. Additionally,the non-probabilistic reliability model becomes the same accurate as probabilistic model with the increase of the bounded uncertain information. The model is decided by the available data and information.
文摘Composite laminates are made up of composite single-plies sequence. The plies generally have the same fiber and resin and their difference in fiber orientation results in a difference in various laminates' strength. Tsai-Hill failure criterion as a limiting state function to analyze structural reliability of a composite laminate and estimation theory in order to estimate statistical parameters of effective stress were utilized to construct probability box. Finally, we used the Monte Carlo simulation and FERUM software to calculate the upper and lower bounds of probability of failure.
基金the financial support from the Distinguished Young Scholars of China by the National Natural Science Foundation of China(51325802)the National Natural Science Foundation of China(51178340,52078358,and 52008304)。
文摘In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures.
文摘Deregulation policy has caused some changes in the concepts of power systems reliability assessment and enhancement. In the present research, generation reliability is considered, and a method for its assessment is proposed using Game Theory (GT) and Neural Networks (NN). Also, due to the stochastic behavior of power markets and generators’ forced outages, Monte Carlo Simulation (MCS) is used for reliability evaluation. Generation reliability focuses merely on the interaction between generation complex and load. Therefore, in the research, based on the behavior of players in the market and using GT, two outcomes are considered: cooperation and non-cooperation. The proposed method is assessed on IEEE-Reliability Test System with satisfactory results. Loss of Load Expectation (LOLE) is used as the reliability index and the results show generation reliability in cooperation market is better than non-cooperation outcome.
文摘Mechanical and electrical products are more and more widely used in all the fields of the society. With the increase in the degree of automation and miniaturization, the structure of many mechanical and electrical products is becoming more and more complex, and the conditions of the use are also increasingly harsh, and therefore more and more product reliability issues are arising, and the reliability technology is being paid more and more attention to. In this paper, aiming at the mechanical and electtical products, from the three aspects of reliability management, reliability design and analysis, and reliability test and evaluation, the reliability research is preliminary studied.
文摘Based on the theory of reliability, this paper studies the preventive maintenance strategy of the simulator with incomplete maintenance, and establishes the preventive maintenance model with the aim of simulating the maintenance cost and simulating machine availability. The main contents of this paper are as follows: Firstly, this paper introduces the background and significance of this paper, expatiates the relevant concepts and mathematical foundation of simulator maintenance related theory and reliability maintenance thought, simulator performance degradation law, Weibull parameter estimation method, As the center of the maintenance (RCM) theory of system maintenance decision analysis.
文摘A fractional-order cumulative optimization GM(1,2)model based on grey theory is proposed to study the relationship between torpedo loading and working reliabilities.In this model,the average relative error function related to order and background value is established.Taking the average relative error function as the objective function,the optimal value of the two parameters is obtained through the optimization method,and the minimum value of the average relative error is determined.The calculation example shows that this method can greatly improve the accuracy of the model and more accurately reflect the relationship between torpedo loading and working reliabilities compared with the traditional GM(1,2)model.
文摘The former gas pipeline operating pressure transmission determined mostly according to the determined formula into the corresponding pipeline parameters are obtained, and the parameters of the actual pipeline due to many reasons, such as measurement error, production batch, etc., is not a fixed value. This paper on pipeline integrity established limit state equation, using Monte Carlo method to calculate the gas pipeline in different pressures of reliability, according to the API (American Petroleum Institute) 579 recommended target reliability to determine the operating pressure of the different regions, and design coefficient method, the calculated results are compared, results of calculation reliability is more reasonable and improve the delivery pressure of the area, the pipeline safety management provides the basis.