The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove tha...The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove that TCC holds for planar graph with Δ = 6 and every 7-cycle contains at most two chords.展开更多
Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct verti...Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct vertices u and v of V(G), then f is called a vertex- distinguishing total k-coloring of G. The minimum number k for which there exists a vertex- distinguishing total k-coloring of G is called the vertex-distinguishing total chromatic number of G and denoted by Xvt(G). The vertex-disjoint union of two cycles of length n is denoted by 2Cn. We will obtain Xvt(2Cn) in this paper.展开更多
Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-dist...Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined.展开更多
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints....Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained.展开更多
A total coloring of a graph G with colors 1, 2, ..., t is called a cyclically interval total t-coloring if all colors are used, and the edges incident to each vertex v∈V(G) together with v are colored by (dG(v)+1) co...A total coloring of a graph G with colors 1, 2, ..., t is called a cyclically interval total t-coloring if all colors are used, and the edges incident to each vertex v∈V(G) together with v are colored by (dG(v)+1) consecutive colors modulo t, where dG(v) is the degree of the vertex v in G. The one point union ?of k-copies of cycle Cn is the graph obtained by taking v as a common vertex such that any two distinct cycles? and? are edge disjoint and do not have any vertex in common except v. In this paper, we study the cyclically interval total colorings of , where n≥3 and k≥2.展开更多
A total coloring of a graph G is a functionsuch that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. A k-interval is a set of k consecutive integers. A cyclically interval total ...A total coloring of a graph G is a functionsuch that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. A k-interval is a set of k consecutive integers. A cyclically interval total t-coloring of a graph G is a total coloring a of G with colors 1,2,...,t, such that at least one vertex or edge of G is colored by i,i=1,2,...,t, and for any, the set is a -interval, or is a -interval, where dG(x) is the degree of the vertex x in G. In this paper, we study the cyclically interval total colorings of cycles and middle graphs of cycles.展开更多
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoi...Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.展开更多
Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges i...Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.展开更多
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), i...Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed.展开更多
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of verte...Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.展开更多
Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to b...Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper.展开更多
A k-proper total coloring of G is called adjacent distinguishing if for any two adjacent vertices have different color sets. According to the property of trees, the adjacent vertex distinguishing total chromatic numbe...A k-proper total coloring of G is called adjacent distinguishing if for any two adjacent vertices have different color sets. According to the property of trees, the adjacent vertex distinguishing total chromatic number will be determined for the Mycielski graphs of trees using the method of induction.展开更多
Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, · · ·, k} such that no adjacent vertices receive the same color and no adjacent ...Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, · · ·, k} such that no adjacent vertices receive the same color and no adjacent edges receive the same color. An Ⅰ-total coloring of a graph G is said to be adjacent vertex distinguishing if for any pair of adjacent vertices u and v of G, we have C_φ(u) = C_φ(v), where C_φ(u) denotes the set of colors of u and its incident edges. The minimum number of colors required for an adjacent vertex distinguishing Ⅰ-total coloring of G is called the adjacent vertex distinguishing Ⅰ-total chromatic number, denoted by χ_at^i(G).In this paper, we characterize the adjacent vertex distinguishing Ⅰ-total chromatic number of outerplanar graphs.展开更多
The objective of this study was to evaluate the effects of wheat variety, food processing, and milling method on antioxidant properties. Black wheat variety Heibaoshi 1 had the highest total phenolic content(659.8 μg...The objective of this study was to evaluate the effects of wheat variety, food processing, and milling method on antioxidant properties. Black wheat variety Heibaoshi 1 had the highest total phenolic content(659.8 μg gallic acid equivalents g-1), total flavonoid content(319.3 μg rutin equivalents g-1), and antioxidant activity, whereas light purple wheat variety Shandongzimai 1 had the lowest total flavonoid content(236.2 μg rutin equivalents g-1) and antioxidant activity. Whole wheat flour and partially debranned grain flour had significantly higher total phenolic contents, total flavonoid contents, and antioxidant activity than refined flour(P < 0.05). Compared with flour, total phenolic contents, total flavonoid contents and antioxidant activity decreased in noodles and steamed bread, whereas noodles had slightly higher total phenolic and flavonoid content than steamed bread. Antioxidant activities(by ferric reducing ability of plasma assay) of steamed bread made from whole wheat flour, partially debranned grain flour, and refined flour were 23.5%, 21.1%, and 31.6% lower, respectively, than the corresponding values of flour. These results suggested that black whole wheat flour and partially debranned grain flour are beneficial to human health.展开更多
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing abil...A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.展开更多
Chickpea lines with colored testa (seed coat) contain high levels of polyphenolic compounds that exhibit high levels of antioxidant activity. In a previous study, we showed that common processing procedures, such as s...Chickpea lines with colored testa (seed coat) contain high levels of polyphenolic compounds that exhibit high levels of antioxidant activity. In a previous study, we showed that common processing procedures, such as soaking and cooking, decrease the levels of these bioactive compounds and subsequent overall antioxidant activity. The observed reduction in total phenolic content was due to the movement of polyphenols from the seed coat to the soaking or cooking water. Here, the effects of baking, roasting and frying processes were examined in relation to total phenolic content (TPC), total flavonoid content (TFC) and ferric-reducing ability of plasma antioxidant activity (FRAP AA) of colored chickpea seeds. Baked, fried and roasted colored chickpea seeds had significantly higher levels of TPC, TFC and FRAP AA than regular cream- and beige-colored seeds subjected to the same treatments. In contrast to our previous results with soaking and cooking, baking, frying and roasting retained most of the TPC, TFC and FRAP AA in the final products. Thus, colored chickpeas subjected to these three processing methods might be considered a functional food in addition to its traditional role of providing dietary proteins.展开更多
文摘The Total Coloring Conjecture (TCC) proposes that every simple graph G is (Δ + 2)-totally-colorable, where Δ is the maximum degree of G. For planar graph, TCC is open only in case Δ = 6. In this paper, we prove that TCC holds for planar graph with Δ = 6 and every 7-cycle contains at most two chords.
文摘Let f be a proper total k-coloring of a simple graph G. For any vertex x ∈ V(G), let Cf(x) denote the set of colors assigned to vertex x and the edges incident with x. If Cf(u) ≠ Cf(v) for all distinct vertices u and v of V(G), then f is called a vertex- distinguishing total k-coloring of G. The minimum number k for which there exists a vertex- distinguishing total k-coloring of G is called the vertex-distinguishing total chromatic number of G and denoted by Xvt(G). The vertex-disjoint union of two cycles of length n is denoted by 2Cn. We will obtain Xvt(2Cn) in this paper.
基金The Fundamental Research Funds for the Central Universities of China(No.3207013904)
文摘Let G be a simple graph and f be a proper total kcoloring of G. The color set of each vertex v of G is the set of colors appearing on v and the edges incident to v. The coloring f is said to be an adjacent vertex-distinguishing total coloring if the color sets of any two adjacent vertices are distinct. The minimum k for which such a coloring of G exists is called the adjacent vertex-distinguishing total chromatic number of G. The join graph of two vertex-disjoint graphs is the graph union of these two graphs together with all the edges that connect the vertices of one graph with the vertices of the other. The adjacent vertex-distinguishing total chromatic numbers of the join graphs of an empty graph of order s and a complete graph of order t are determined.
文摘Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u) ≠ C(v) for any two different vertices u and v of V (G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by Хvt^e(G) and is called the VDE T chromatic number of G. The VDET coloring of complete bipartite graph K7,n (7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K7,n (7 ≤ n ≤ 95) has been obtained.
文摘A total coloring of a graph G with colors 1, 2, ..., t is called a cyclically interval total t-coloring if all colors are used, and the edges incident to each vertex v∈V(G) together with v are colored by (dG(v)+1) consecutive colors modulo t, where dG(v) is the degree of the vertex v in G. The one point union ?of k-copies of cycle Cn is the graph obtained by taking v as a common vertex such that any two distinct cycles? and? are edge disjoint and do not have any vertex in common except v. In this paper, we study the cyclically interval total colorings of , where n≥3 and k≥2.
文摘A total coloring of a graph G is a functionsuch that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. A k-interval is a set of k consecutive integers. A cyclically interval total t-coloring of a graph G is a total coloring a of G with colors 1,2,...,t, such that at least one vertex or edge of G is colored by i,i=1,2,...,t, and for any, the set is a -interval, or is a -interval, where dG(x) is the degree of the vertex x in G. In this paper, we study the cyclically interval total colorings of cycles and middle graphs of cycles.
基金Supported by the NNSF of China(61163037,61163054)Supported by the Scientific Research Foundation of Ningxia University((E):ndzr09-15)
文摘Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.
基金The NSF(61163037,61163054) of Chinathe Scientific Research Project(nwnu-kjcxgc-03-61) of Northwest Normal University
文摘Let G be a simple graph. An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. Let C(u) be the set of colors of vertex u and edges incident to u under f. For an IE-total coloring f of G using k colors, if C(u)=C(v) for any two different vertices u and v of V (G), then f is called a k-vertex-distinguishing IE-total-coloring of G, or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G), and is called the VDIET chromatic number of G. We get the VDIET chromatic numbers of cycles and wheels, and propose related conjectures in this paper.
基金Supported by the NNSF of China(10771091)Supported by the Qinglan Project of Lianyungang Teacher’s College(2009QLD3)
文摘Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by x^e_(at) (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs C_m∨G_n are obtained, where G_n is one of a star S_n , a fan F_n , a wheel W_n and a complete graph K_n . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of C_m∨G_n are confirmed.
基金Supported by the National Natural Science Foundation of China(61163037, 61163054, 11261046, 61363060)
文摘Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)^(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.
基金Supported by the NNSF of China(Grant No.11761064,61163037)
文摘Let G be a simple graph and f be a proper total coloring(or a total coloring in brief) of G. For any vertex u in G, Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u) = Cf(v)for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G(in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of m C9 in this paper.
基金Foundation item: Supported by Natural Science Foundation of China(60503002)
文摘A k-proper total coloring of G is called adjacent distinguishing if for any two adjacent vertices have different color sets. According to the property of trees, the adjacent vertex distinguishing total chromatic number will be determined for the Mycielski graphs of trees using the method of induction.
基金Supported by the National Natural Science Foundation of China(61163037,61163054,61363060)
文摘Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, · · ·, k} such that no adjacent vertices receive the same color and no adjacent edges receive the same color. An Ⅰ-total coloring of a graph G is said to be adjacent vertex distinguishing if for any pair of adjacent vertices u and v of G, we have C_φ(u) = C_φ(v), where C_φ(u) denotes the set of colors of u and its incident edges. The minimum number of colors required for an adjacent vertex distinguishing Ⅰ-total coloring of G is called the adjacent vertex distinguishing Ⅰ-total chromatic number, denoted by χ_at^i(G).In this paper, we characterize the adjacent vertex distinguishing Ⅰ-total chromatic number of outerplanar graphs.
基金funded by the Special Funds for Industry System (CARS-03)Science and Technology Support Program (2012BAD04B07-03)
文摘The objective of this study was to evaluate the effects of wheat variety, food processing, and milling method on antioxidant properties. Black wheat variety Heibaoshi 1 had the highest total phenolic content(659.8 μg gallic acid equivalents g-1), total flavonoid content(319.3 μg rutin equivalents g-1), and antioxidant activity, whereas light purple wheat variety Shandongzimai 1 had the lowest total flavonoid content(236.2 μg rutin equivalents g-1) and antioxidant activity. Whole wheat flour and partially debranned grain flour had significantly higher total phenolic contents, total flavonoid contents, and antioxidant activity than refined flour(P < 0.05). Compared with flour, total phenolic contents, total flavonoid contents and antioxidant activity decreased in noodles and steamed bread, whereas noodles had slightly higher total phenolic and flavonoid content than steamed bread. Antioxidant activities(by ferric reducing ability of plasma assay) of steamed bread made from whole wheat flour, partially debranned grain flour, and refined flour were 23.5%, 21.1%, and 31.6% lower, respectively, than the corresponding values of flour. These results suggested that black whole wheat flour and partially debranned grain flour are beneficial to human health.
基金The National Basic Research Program of China(973Program)(No.2011CB707904)the National Natural Science Foundation of China(No.61201344,61271312,61073138)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110092110023,20120092120036)the Natural Science Foundation of Jiangsu Province(No.BK2012329)
文摘A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.
文摘Chickpea lines with colored testa (seed coat) contain high levels of polyphenolic compounds that exhibit high levels of antioxidant activity. In a previous study, we showed that common processing procedures, such as soaking and cooking, decrease the levels of these bioactive compounds and subsequent overall antioxidant activity. The observed reduction in total phenolic content was due to the movement of polyphenols from the seed coat to the soaking or cooking water. Here, the effects of baking, roasting and frying processes were examined in relation to total phenolic content (TPC), total flavonoid content (TFC) and ferric-reducing ability of plasma antioxidant activity (FRAP AA) of colored chickpea seeds. Baked, fried and roasted colored chickpea seeds had significantly higher levels of TPC, TFC and FRAP AA than regular cream- and beige-colored seeds subjected to the same treatments. In contrast to our previous results with soaking and cooking, baking, frying and roasting retained most of the TPC, TFC and FRAP AA in the final products. Thus, colored chickpeas subjected to these three processing methods might be considered a functional food in addition to its traditional role of providing dietary proteins.