The coupling effect of heat absorption and release exists in the thermal decomposition of a few chemical materials.However,the impact of the above coupling on thermal hazard assessment is not considered in the literat...The coupling effect of heat absorption and release exists in the thermal decomposition of a few chemical materials.However,the impact of the above coupling on thermal hazard assessment is not considered in the literature studies.In this work,nitroguanidine(NQ)and 1,3,5-trinitro-1,3,5-triazine(RDX)are selected as representative materials to explore the influence of the coupling effect on the thermal hazard assessment of chemical materials.The linear heating experiments of NQ and RDX are carried out by a microcalorimeter and synchronous thermal analyser.The thermal decomposition curves are decoupled by advanced thermokinetics software.The thermal decomposition and kinetic parameters before and after decoupling are calculated.The results of TG experiment show that both NQ and RDX began to lose mass during the endothermic stage.The endothermic melting and exothermic decomposition of NQ and RDX are coupled within this stage.The coupling effect has different degrees of influence on its initial decomposition temperature and safety parameters.Compared with the parameters in the coupling state,the initial decomposition temperature and adiabatic induction period after decoupling decrease.The self-accelerating decomposition temperature increases,and internal thermal runaway time decreases.In the thermal hazard assessment of chemical materials with coupling effects,the calculated parameters after decoupling should be taken as an important safety index。展开更多
The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related ...The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.展开更多
The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related ...The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.展开更多
This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar(SBAS-In SAR)technique and Google Earth optical remote sensing images to analyze the area within 20 km around the epicenter ...This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar(SBAS-In SAR)technique and Google Earth optical remote sensing images to analyze the area within 20 km around the epicenter of a M 3.9, earthquake that occurred in Tanchang County, Gansu Province, on December 28, 2020. The objective is to identify potential earthquake-induced landslides, assess their scale, and determine their impact range. The study results reveal the successful identification of two potential landslides in the 20 km radius around the epicenter. Through time-series deformation analysis, it was observed that these potential landslides were significantly influenced by both the earthquake and rainfall. Further estimation of these potential landslides indicates maximum depths of 7.4 m and 14.1 m for the failure surfaces, with volumes of 9.02 × 10~4m~3and 25.5 ×10~4m~3, respectively. Finally, based on the simulation analysis of Massflow software, the maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Shangyaai is 12 m, the area of the final accumulation area is 1.75 × 10~4m~2, and the farthest movement distance is 1124 m. The maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Wangshancun is 8 m, the area of the final accumulation area is 7.89 × 10~4m~2, and the farthest movement distance is 742 m.展开更多
This paper examines the management of hazardous chemicals in Chinese university laboratories,identifying key challenges and proposing improvements.It reviews current practices and safety measures,highlighting deficien...This paper examines the management of hazardous chemicals in Chinese university laboratories,identifying key challenges and proposing improvements.It reviews current practices and safety measures,highlighting deficiencies such as inadequate safety systems and insufficient awareness among personnel.The study emphasizes the necessity of tailored safety management systems,the integration of digital tracking technologies like Radio Frequency Identification,and enhanced safety training for staff.The proposed recommendations aim to mitigate risks and enhance laboratory safety and efficiency.In conclusion,the paper asserts that a comprehensive approach,encompassing improved management systems,technological advancements,and educational initiatives,is essential for safer chemical handling in academic research environments.展开更多
Based on the urgency of thermal hazard control in deep coal mines,we studied the status of deep thermal damage and cooling technology both at home and abroad,summarized the causes of deep thermal hazard,analysed and c...Based on the urgency of thermal hazard control in deep coal mines,we studied the status of deep thermal damage and cooling technology both at home and abroad,summarized the causes of deep thermal hazard,analysed and compared the control technologies for deep thermal hazards.The results show that the causes of deep thermal damage can be attributed to three aspects,i.e.,climate,geological and mining factors,of which the geological factors are deemed the major reasons for thermal hazards.As well,we compared a number of cooling technologies of domestic and overseas provenance,such as central air conditioning cooling technology,ice cooling technology and water cooling technology,with one other cooling technology,i.e.,the HEMS cooling technology,which has a large and important effect with its unique"pure air"cooling technology,realizes the utilizing of heat resources from underground to the ground.This technology makes use of heat obtained underground;thus the technology can promote low-carbon environmental economic development in coal mines,in order to achieve low- carbon coal production in China.展开更多
Earthquakes are a serious natural disaster faced by countries all over the world. Research on earthquake hazard mitigation are important parts of earthquake science and is a feature of Chinas development of earthqua...Earthquakes are a serious natural disaster faced by countries all over the world. Research on earthquake hazard mitigation are important parts of earthquake science and is a feature of Chinas development of earthquake science. In recent years,the Ministry of Science and Technology (MOST) of the Peoples Republic of China,the National Natural Science Foundation of China (NSFC) and the China Earthquake Administration (CEA) have attached great importance to basic research on earthquake hazard mitigation,and new opportunities and challenges have emerged. This paper collects the applications and approvals of the National Key R&D Program and the NSFC projects undertaken by the research institutes of the CEA system in recent years. The CEA system has received funding in the 13th "Five-year Plan" for "Monitoring,Early Warning and Prevention of Major Natural Disaster". The implementation of these projects is expected to provide support for the basic science and applied research of the CEA system. In the NSFC,the number of applications from the CEA system is relatively stable,and the funding rate is slightly higher than the average for the department of earth science. Although no detailed statistical analysis has been performed,the CEA system still has room for improvement in the application of talent and major programs. I hope that the brief review of new opportunities that have arose in recent years described in this article can provide some background and new thinking for future challenges.展开更多
With the continuous development of civil engineering,concrete crack treatment technology has become an important research field.This paper proposes treatment techniques for different types of cracks,including the prev...With the continuous development of civil engineering,concrete crack treatment technology has become an important research field.This paper proposes treatment techniques for different types of cracks,including the prevention and repair of surface cracks,the reinforcement and grouting of structural cracks,and the design and construction of controlled cracks through the analysis of the causes and classification of concrete cracks.The methods and suggestions proposed in this paper are practical and can improve the quality and safety of buildings.展开更多
基金the project of the Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory(Grant No.STACPL320221B04)Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)The project number is ZDKT21-01.
文摘The coupling effect of heat absorption and release exists in the thermal decomposition of a few chemical materials.However,the impact of the above coupling on thermal hazard assessment is not considered in the literature studies.In this work,nitroguanidine(NQ)and 1,3,5-trinitro-1,3,5-triazine(RDX)are selected as representative materials to explore the influence of the coupling effect on the thermal hazard assessment of chemical materials.The linear heating experiments of NQ and RDX are carried out by a microcalorimeter and synchronous thermal analyser.The thermal decomposition curves are decoupled by advanced thermokinetics software.The thermal decomposition and kinetic parameters before and after decoupling are calculated.The results of TG experiment show that both NQ and RDX began to lose mass during the endothermic stage.The endothermic melting and exothermic decomposition of NQ and RDX are coupled within this stage.The coupling effect has different degrees of influence on its initial decomposition temperature and safety parameters.Compared with the parameters in the coupling state,the initial decomposition temperature and adiabatic induction period after decoupling decrease.The self-accelerating decomposition temperature increases,and internal thermal runaway time decreases.In the thermal hazard assessment of chemical materials with coupling effects,the calculated parameters after decoupling should be taken as an important safety index。
文摘The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.
文摘The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.
基金supported by the Natural Science Foundation of Gansu Province (22JR5RA326)The geological disaster prevention projects of Gansu Provincial Bureau of Geology and Mineral Resources (2023-2-9)。
文摘This study aims to utilize the Small Baseline Subset Interferometric Synthetic Aperture Radar(SBAS-In SAR)technique and Google Earth optical remote sensing images to analyze the area within 20 km around the epicenter of a M 3.9, earthquake that occurred in Tanchang County, Gansu Province, on December 28, 2020. The objective is to identify potential earthquake-induced landslides, assess their scale, and determine their impact range. The study results reveal the successful identification of two potential landslides in the 20 km radius around the epicenter. Through time-series deformation analysis, it was observed that these potential landslides were significantly influenced by both the earthquake and rainfall. Further estimation of these potential landslides indicates maximum depths of 7.4 m and 14.1 m for the failure surfaces, with volumes of 9.02 × 10~4m~3and 25.5 ×10~4m~3, respectively. Finally, based on the simulation analysis of Massflow software, the maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Shangyaai is 12 m, the area of the final accumulation area is 1.75 × 10~4m~2, and the farthest movement distance is 1124 m. The maximum thickness of soil accumulation in the final accumulation area after sliding of the potential landslide in Wangshancun is 8 m, the area of the final accumulation area is 7.89 × 10~4m~2, and the farthest movement distance is 742 m.
文摘This paper examines the management of hazardous chemicals in Chinese university laboratories,identifying key challenges and proposing improvements.It reviews current practices and safety measures,highlighting deficiencies such as inadequate safety systems and insufficient awareness among personnel.The study emphasizes the necessity of tailored safety management systems,the integration of digital tracking technologies like Radio Frequency Identification,and enhanced safety training for staff.The proposed recommendations aim to mitigate risks and enhance laboratory safety and efficiency.In conclusion,the paper asserts that a comprehensive approach,encompassing improved management systems,technological advancements,and educational initiatives,is essential for safer chemical handling in academic research environments.
基金Financial support for this project,provided by the New Century Excellent Talent Program of the Ministry of Education(No.NCET- 08-0833)the National Natural Science Foundation of China(No. 41040027)+1 种基金the National Basic Research Program of China(No. 2006CB202200)the Program for Changjiang Scholars and Innovative Research Team in Universities of China(No.IRT0656)
文摘Based on the urgency of thermal hazard control in deep coal mines,we studied the status of deep thermal damage and cooling technology both at home and abroad,summarized the causes of deep thermal hazard,analysed and compared the control technologies for deep thermal hazards.The results show that the causes of deep thermal damage can be attributed to three aspects,i.e.,climate,geological and mining factors,of which the geological factors are deemed the major reasons for thermal hazards.As well,we compared a number of cooling technologies of domestic and overseas provenance,such as central air conditioning cooling technology,ice cooling technology and water cooling technology,with one other cooling technology,i.e.,the HEMS cooling technology,which has a large and important effect with its unique"pure air"cooling technology,realizes the utilizing of heat resources from underground to the ground.This technology makes use of heat obtained underground;thus the technology can promote low-carbon environmental economic development in coal mines,in order to achieve low- carbon coal production in China.
基金sponsored by the National Key R&D Program of China(Grant No.2018YFC1503200)the National Natural Science Foundation of China(Grant Nos.41614058,41790463 and 41574050)
文摘Earthquakes are a serious natural disaster faced by countries all over the world. Research on earthquake hazard mitigation are important parts of earthquake science and is a feature of Chinas development of earthquake science. In recent years,the Ministry of Science and Technology (MOST) of the Peoples Republic of China,the National Natural Science Foundation of China (NSFC) and the China Earthquake Administration (CEA) have attached great importance to basic research on earthquake hazard mitigation,and new opportunities and challenges have emerged. This paper collects the applications and approvals of the National Key R&D Program and the NSFC projects undertaken by the research institutes of the CEA system in recent years. The CEA system has received funding in the 13th "Five-year Plan" for "Monitoring,Early Warning and Prevention of Major Natural Disaster". The implementation of these projects is expected to provide support for the basic science and applied research of the CEA system. In the NSFC,the number of applications from the CEA system is relatively stable,and the funding rate is slightly higher than the average for the department of earth science. Although no detailed statistical analysis has been performed,the CEA system still has room for improvement in the application of talent and major programs. I hope that the brief review of new opportunities that have arose in recent years described in this article can provide some background and new thinking for future challenges.
文摘With the continuous development of civil engineering,concrete crack treatment technology has become an important research field.This paper proposes treatment techniques for different types of cracks,including the prevention and repair of surface cracks,the reinforcement and grouting of structural cracks,and the design and construction of controlled cracks through the analysis of the causes and classification of concrete cracks.The methods and suggestions proposed in this paper are practical and can improve the quality and safety of buildings.