期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
On symplectic automorphisms of elliptic surfaces acting on CH_(0)
1
作者 Jiabin Du Wenfei Liu 《Science China Mathematics》 SCIE CSCD 2023年第3期443-456,共14页
Let S be a complex smooth projective surface of Kodaira dimension one. We show that the group Auts(S) of symplectic automorphisms acts trivially on the Albanese kernel CH_(0)(S)albof the 0-th Chow group CH_(0)(S), unl... Let S be a complex smooth projective surface of Kodaira dimension one. We show that the group Auts(S) of symplectic automorphisms acts trivially on the Albanese kernel CH_(0)(S)albof the 0-th Chow group CH_(0)(S), unless possibly if the geometric genus and the irregularity satisfy pg(S) = q(S) ∈ {1, 2}. In the exceptional cases, the image of the homomorphism Auts(S) → Aut(CH_(0)(S)alb) has the order at most 3. Our arguments actually take care of the group Autf(S) of fibration-preserving automorphisms of elliptic surfaces f : S → B. We prove that if σ ∈ Autf(S) induces the trivial action on Hi,0(S) for i > 0, then it induces the trivial action on CH_(0)(S)alb. As a by-product we obtain that if S is an elliptic K3 surface, then Autf(S)∩Auts(S)acts trivially on CH_(0)(S)alb. 展开更多
关键词 symplectic automorphism elliptic surface Chow group
原文传递
Full automorphism group of the generalized symplectic graph 被引量:4
2
作者 ZENG LiWei CHAI Zhao +1 位作者 FENG RongQuan MA ChangLi 《Science China Mathematics》 SCIE 2013年第7期1509-1520,共12页
Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K... Let Fq be a finite field of odd characteristic, m, v the integers with 1 ≤ m ≤ v and K a 2v × 2v nonsingular alternate matrix over Fq. In this paper, the generalized symplectic graph GSp2v(q, m) relative to K over Fq is introduced. It is the graph with m-dimensional totally isotropic subspaces of the 2v-dimensional symplectic space Fq(2v) as its vertices and two vertices P and Q are adjacent if and only if the rank of PKQw is 1 and the dimension of P ∩ Q is m - 1. It is proved that the full automorphism group of the graph GSp2v(q, m) is the projective semilinear symplectic group P∑p(2v, q). 展开更多
关键词 generalized symplectic graph automorphism projective generalized symplectic group totally isotropic subspace generalized dual polar graph
原文传递
The automorphism group of a generalized extraspecial p-group 被引量:6
3
作者 Liu HeGuo Wang YuLei 《Science China Mathematics》 SCIE 2010年第2期316-335,共20页
In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {... In this paper, the automorphism group of a generalized extraspecial p-group G is determined, where p is a prime number. Assume that |G| = p 2n+m and |ζG| = p m , where n 1 and m 2. (1) When p is odd, let Aut G G = {α∈ AutG | α acts trivially on G }. Then Aut G G⊿AutG and AutG/Aut G G≌Z p-1 . Furthermore, (i) If G is of exponent p m , then Aut G G/InnG≌Sp(2n, p) × Z p m-1 . (ii) If G is of exponent p m+1 , then Aut G G/InnG≌ (K Sp(2n-2, p))×Z p m-1 , where K is an extraspecial p-group of order p 2n-1 . In particular, Aut G G/InnG≌ Z p × Z p m-1 when n = 1. (2) When p = 2, then, (i) If G is of exponent 2 m , then AutG≌ Sp(2n, 2) × Z 2 × Z 2 m-2 . In particular, when n = 1, |AutG| = 3 · 2 m+2 . None of the Sylow subgroups of AutG is normal, and each of the Sylow 2-subgroups of AutG is isomorphic to H K, where H = Z 2 × Z 2 × Z 2 × Z 2 m-2 , K = Z 2 . (ii) If G is of exponent 2 m+1 , then AutG≌ (I Sp(2n-2, 2)) × Z 2 × Z 2 m-2 , where I is an elementary abelian 2-group of order 2 2n-1 . In particular, when n = 1, |AutG| = 2 m+2 and AutG≌ H K, where H = Z 2 × Z 2 × Z 2 m-1 , K = Z 2 . 展开更多
关键词 GENERALIZED extraspecial P-groupS central product symplectic groups automorphismS
原文传递
Automorphisms of a Class of Finite p-groups with a Cyclic Derived Subgroup 被引量:1
4
作者 Yu Lei WANG He Guo LIU 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2021年第6期926-940,共15页
Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Th... Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Then G is a central product of an extraspecial pkgroup E andζG.Let|E|=p(2n+1)k and|ζG|=p(m+1)k.Suppose that the exponents of E andζG are pk+l and pk+r,respectively,where 0≤l,r≤k.Let AutG’G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G’,let AutG/ζG,ζG G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the centerζG and let AutG/ζG,ζG/G’G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially onζG/G’.Then(ⅰ)The group extension 1→Aut G’→Aut G→Aut G’→1 is split.(ⅱ)AutG’G/AutG/ζG,ζG G≌G1×G2,where Sp(2n-2,Zpk)■H≤G1≤Sp(2n,Zpk),H is an extraspecial pk-group of order p(2n-1)k and(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)≤G2≤GL(m,Zpk)■Zpk(m).In particular,G1=Sp(2n-2,Zpk)■H if and only if l=k and r=0;G1=Sp(2n,Zpx)if and only if l≤r;G2=(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)if and only if r=k;G2=GL(m,Zpk)■Zpk((m))if and only if r=0.(ⅲ)AutG’G/Aut G/ζG,ζG/G’G≌G1×G3,where G1 is defined in(ⅱ);GL(ml,Zpk)■Zpk(m-1)≤G3≤GL(n,Zpk).In particular,G3=GL(m-1,Zpk)■Zpk(m-1)if and only if r=k;G3=GL(m,Zpk)if and only if r=0.(ⅳ)AntG/ζG,ζG/G’G≌AutG/ζG,ζG/G’G■Zpk(m),If m=0,then AntG/ζG,ζG/G’G=Inn G≌Zpk(2n);If m>0,then AntG/ζG,ζG/G’G≌Zpk(2nm)×Zpk-r(2n),and AutG/ζG,ζG G/Inn G≌Zpk((2n(m-1))×Zpk-r(2n). 展开更多
关键词 automorphism P-group cyclic derived subgroup symplectic group
原文传递
The Automorphism Group of a Class of Nilpotent Groups with Infinite Cyclic Derived Subgroups
5
作者 He Guo LIU Yu Lei WANG Ji Ping ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第7期1151-1158,共8页
The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial E-group E and a free abelian group A with rank m, w... The automorphism group of a class of nilpotent groups with infinite cyclic derived subgroups is determined. Let G be the direct product of a generalized extraspecial E-group E and a free abelian group A with rank m, where E={{1 kα1 kα2…kαn aα+1 0 1 0 … 0 αn+2 0 0 0 … 1 α2n+1 0 0 0 …0 1}}αi∈Z,i=1,2,…,2n+1},where k is a positive integer. Let AutG'G be the normal subgroup of AutG consisting of all elements of AutG which act trivially on the derived subgroup G' of G, and Autc G/ζG,ζGG be the normal subgroup of AutG consisting of all central automorphisms of G which also act trivially on the center ζG of G. Then (i) The extension →AutG'G→AutG→AutG'→1 is split.(ii)AutG'G/AutG/ζG,ζGG≈Sp(2n,Z)×(GL(m,Z)×(Z)m),(iii)Aut GζG,ζGG/InnG≈(Zk)2n+(Z)2nm. 展开更多
关键词 Generalized extraspecial Z-group symplectic group automorphism group
原文传递
Winter定理和Dietz定理的推广 被引量:3
6
作者 王玉雷 刘合国 《数学年刊(A辑)》 CSCD 北大核心 2012年第5期609-630,共22页
设G是由中心扩张1→Z_(p^m)→G→Z_p×…Z_p所决定的有限p-群,且|G'|≤p.确定了G的自同构群结构。
关键词 广义超特殊p-群 辛空间 正交空间 自同构 中心扩张
下载PDF
域上非正则辛群的自同构 被引量:1
7
作者 王路群 刘绍武 《黑龙江大学自然科学学报》 CAS 1991年第1期8-17,共10页
本文确定了特征不为2的域上非正则辛群的自同构形式,除标准形式外,本文又给出一个非标准形式的自同构.
关键词 非正则辛群 线性群 自同构
下载PDF
一类中心循环的有限p-群的自同构群的研究
8
作者 王玉雷 刘合国 吴佐慧 《数学杂志》 CSCD 北大核心 2016年第6期1273-1282,共10页
本文研究了一类中心循环的有限p-群G的自同构群.利用在G的导群上作用平凡的自同构以及环上的辛群和正交群,确定了G的自同构群的结构,这推广了Bornand的相应结果.
关键词 有限P-群 循环中心 辛空间 自同构群
下载PDF
广义超特殊p-群的自同构群Ⅲ
9
作者 王玉雷 刘合国 《数学年刊(A辑)》 CSCD 北大核心 2011年第3期307-318,共12页
确定了广义超特殊p-群G的自同构群的结构.设|G|=p^(2n+m),|■G|=p^m,其中n≥1,m≥2,Aut_fG是AutG中平凡地作用在Frat G上的元素形成的正规子群,则(1)当G的幂指数是p^m时,(i)如果p是奇素数,那么AutG/AutfG≌Z_((p-1)p^(m-2)),并且AutfG/I... 确定了广义超特殊p-群G的自同构群的结构.设|G|=p^(2n+m),|■G|=p^m,其中n≥1,m≥2,Aut_fG是AutG中平凡地作用在Frat G上的元素形成的正规子群,则(1)当G的幂指数是p^m时,(i)如果p是奇素数,那么AutG/AutfG≌Z_((p-1)p^(m-2)),并且AutfG/InnG≌Sp(2n,p)×Zp.(ii)如果p=2,那么AutG=Aut_fG(若m=2)或者AutG/AutfG≌Z_(2^(m-3))×Z_2(若m≥3),并且AutfG/InnG≌Sp(2n,2)×Z_2.(2)当G的幂指数是p^(m+1)时,(i)如果p是奇素数,那么AutG=〈θ〉■Aut_fG,其中θ的阶是(p-1)p^(m-1),且Aut_f G/Inn G≌K■Sp(2n-2,p),其中K是p^(2n-1)阶超特殊p-群.(ii)如果p=2,那么AutG=〈θ_1,θ_2〉■Aut_fG,其中〈θ_1,θ_2〉=〈θ_1〉×〈θ_2〉≌Z_(2^(m-2))×Z_2,并且Aut_fG/Inn G≌K×Sp(2n-2,2),其中K是2^(2n-1)阶初等Abel 2-群.特别地,当n=1时,AutfG/InnG≌Zp. 展开更多
关键词 广义超特殊p-群 中心积 辛群 自同构
下载PDF
Automorphisms of Extensions of Q by a Direct Sum of Finitely Many Copies of Q
10
作者 He Guo LIU Yu Lei WANG Ji Ping ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2019年第2期204-212,共9页
Let G be an extension of Q by a direct sum of r copies of Q.(1) If G is abelian, then G is a direct sum of r + 1 copies of Q and Aut G = GL(r + 1, Q);(2) If G is non-abelian, then G is a direct product of an extraspec... Let G be an extension of Q by a direct sum of r copies of Q.(1) If G is abelian, then G is a direct sum of r + 1 copies of Q and Aut G = GL(r + 1, Q);(2) If G is non-abelian, then G is a direct product of an extraspecial Q-group E and m copies of Q, where E/ζ E is a linear space over Q with dimension 2 n and m + 2 n = r. Furthermore, let Aut_G'G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G of G, and Aut_(G/ζG),_(ζG)G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the center ζ G of G. Then(i) The extension 1→ Aut_(G')G→ Aut G→ Aut G'→ 1 is split;(ii)Aut_(G')G/Aut_(G/ζG),_(ζG)G = Sp(2 n, Q) ×(GL(m, Q) Q^(m));(iii) Aut_(G/ζG),ζGG/Inn G= Q^(2 nm). 展开更多
关键词 Extraspecial Q-group group extension symplectic group automorphism group
原文传递
Squeezing in Representation by Quadratic Combinations of Canonical Operators
11
作者 FANHong-Yi A.Wuensche 《Communications in Theoretical Physics》 SCIE CAS CSCD 2003年第6期717-722,共6页
The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP&... The technique of integration within an ordered product of operators and the coherent-state representation are used to convert exponential operators of basis operators (P<SUP>2</SUP>, Q<SUP>2</SUP>, PQ + QP) to those of the basis operators (a<SUP>2</SUP>, a<SUP>?2</SUP>, a<SUP>?</SUP>a). The coherent state representation of unitary squeezing operators in the factorized form and their normal product form are thus derived. The squeezing engendered by operators of the general form is also obtained. 展开更多
关键词 time-dependent squeezing canonical operators symplectic group integration within ordered products inner automorphism of SU(1 1) group
下载PDF
一类无限Cernikov p-群的自同构群
12
作者 刘合国 高睿 +1 位作者 徐行忠 廖军 《数学年刊(A辑)》 CSCD 北大核心 2022年第1期73-94,共22页
设G是无限Cernikov p-群,且G的每个真商群是Abel群,但G不是Abel群,本文确定了G的自同构群.
关键词 Cernikov p-群 中心积 辛群 自同构
下载PDF
域上非正则射影辛群的自同构
13
作者 刘绍武 《黑龙江大学自然科学学报》 CAS 1991年第4期13-18,共6页
本文确定了特征不等于2的域上的非正则射影辛群的自同构形式.除了标准的自同构形式外,又给出了一种非标准的自同构形式,它有别于正则辛辟的自同构.
关键词 非正则辛群 射影辛群 自同构
下载PDF
关于广义超特殊p-群的自同构群 被引量:3
14
作者 王玉雷 刘合国 《中国科学:数学》 CSCD 北大核心 2011年第2期125-134,共10页
用如下的方式确定了广义超特殊p-群G的自同构群.设|G|=p2n+m,|ζG|=pm,|N|=pl并且GNζG,其中n1且m2.AutnG表示AutG中平凡地作用在N上的所有自同构形成的正规子群.则(1)当p是奇素数时,AutG/AutnG≌Z(p-1)pl-1.进一步地,(i)如果G的幂指数... 用如下的方式确定了广义超特殊p-群G的自同构群.设|G|=p2n+m,|ζG|=pm,|N|=pl并且GNζG,其中n1且m2.AutnG表示AutG中平凡地作用在N上的所有自同构形成的正规子群.则(1)当p是奇素数时,AutG/AutnG≌Z(p-1)pl-1.进一步地,(i)如果G的幂指数是pm,则AutnG/InnG≌Sp(2n,p)×H.(ii)如果G的幂指数是pm+1,则AutnG/InnG~=(KSp(2n-2,p))×H,其中K是一个阶为p2n-1的超特殊p-群.这里H=1(如果m=l)或者Zpm-l(如果m>l).(2)当p=2时,AutG=AutnG(如果l=1)或者AutG/AutnG~=Z2l-2×Z2(如果l2).进一步地,(i)如果G的幂指数是2m,则AutnG/InnG≌Sp(2n,2)×H.(ii)如果G的幂指数是2m+1,则AutnG/InnG~=(KSp(2n-2,2))×H,其中K是一个阶为22n-1的初等Abel2-群.这里H=Z2m-2×Z2(如果l=1),1(如果l2并且l=m),或者Z2m-l(如果l2并且m>l). 展开更多
关键词 广义超特殊p-群 中心积 辛群 自同构
原文传递
超特殊Z-群的自同构群
15
作者 王玉雷 刘合国 +1 位作者 吴佐慧 张继平 《数学学报(中文版)》 CSCD 北大核心 2017年第2期273-278,共6页
确定了超特殊Z-群的自同构群.设G是超特殊Z-群,即G={(1 α_1 α_2···α_n α_(n+1) 0 1 0···0 α_(n+2) ···0 0 0 ··· 0 α_2n 0 0 0··· 1 α_(2n+1) 0 0... 确定了超特殊Z-群的自同构群.设G是超特殊Z-群,即G={(1 α_1 α_2···α_n α_(n+1) 0 1 0···0 α_(n+2) ···0 0 0 ··· 0 α_2n 0 0 0··· 1 α_(2n+1) 0 0 0···1 α_(2n+1) 0 0 0···0 1)|α_j∈Z,j=1,2,3,...,2n+1}Aut_cG是AutG中平凡作用在ζG上的自同构形成的正规子群,则AutG=Aut_cG×Z_2,且1→Z···Z}2N→Aut_cG→Sp(2n,Z)→1是正合列. 展开更多
关键词 超特殊Z-群 中心积 辛群 自同构群
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部