In the past decade or so,AI(artificial intelligence)technology has been growing with such a mesmerizing speed that today its presence in almost any industry that deals with any huge sheer volume of data is taking adva...In the past decade or so,AI(artificial intelligence)technology has been growing with such a mesmerizing speed that today its presence in almost any industry that deals with any huge sheer volume of data is taking advantage of AI by integrating it into their day-to-day operation.Meanwhile,seven billion people worldwide shape the world’s energy system and directly impact the fundamental drivers of energy,both renewable and non-renewable sources,to meet the demand for electricity from them.These energy sources can be reached from nature such as solar,wind,etc.,and human-made such as NPPs(nuclear power plants)in the form of either fission as an old technology since the Manhattan project and in the near future as fusion in the form of magnetic or inertial confinements.Meanwhile,AI controlling nuclear reactors are about to happen.The basic idea is to apply AI with its two subset components as ML(machine learning),and DL(deep learning)techniques to go through the mountains of data that come from a reactor,spot patterns in it,and calling them to the unit’s human attention operators is not invadable either.Designers of such nuclear reactors will combine simulation and real-world data,comparing scenarios from each to develop“confidence[in]what they can predict and what is the range of uncertainty of their prediction”.Adding that,in the end,the operator will make the final decisions in order to keep these power plants safe while they are in operation and how to secure them against cyber-attack natural or human-made disasters.In this short communication article,we would like to see how we can prove some of these concepts;then a NPP manufacturer can pick it up and use it in their designs of a new generation of these reactors.展开更多
In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other ...In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method.展开更多
Boron neutron capture therapy(BNCT)is recognized as a precise binary targeted radiotherapy technique that effectively eliminates tumors through the^(10)B(n,α)^(7)Li nuclear reaction.Among various neutron sources,acce...Boron neutron capture therapy(BNCT)is recognized as a precise binary targeted radiotherapy technique that effectively eliminates tumors through the^(10)B(n,α)^(7)Li nuclear reaction.Among various neutron sources,accelerator-based sources have emerged as particularly promising for BNCT applications.The^(7)Li(p,n)^(7)Be reaction is highly regarded as a potential neutron source for BNCT,owing to its low threshold energy for the reaction,significant neutron yield,appropriate average neutron energy,and additional benefits.This study utilized Monte Carlo simulations to model the physical interactions within a lithium target subjected to proton bombardment,including neutron moderation by an MgF_(2)moderator and subsequent BNCT dose analysis using a Snyder head phantom.The study focused on calculating the yields of epithermal neutrons for various incident proton energies,finding an optimal energy at 2.7 MeV.Furthermore,the Snyder head phantom was employed in dose simulations to validate the effectiveness of this specific incident energy when utilizing a^(7)Li(p,n)^(7)Be neutron source for BNCT purposes.展开更多
Recently,renewable energy(RE)has become popular due to its benefits,such as being inexpensive,low-carbon,ecologically friendly,steady,and reliable.The RE sources are gradually combined with non-renewable energy(NRE)so...Recently,renewable energy(RE)has become popular due to its benefits,such as being inexpensive,low-carbon,ecologically friendly,steady,and reliable.The RE sources are gradually combined with non-renewable energy(NRE)sources into electric grids to satisfy energy demands.Since energy utilization is highly related to national energy policy,energy prediction using artificial intelligence(AI)and deep learning(DL)based models can be employed for energy prediction on RE and NRE power resources.Predicting energy consumption of RE and NRE sources using effective models becomes necessary.With this motivation,this study presents a new multimodal fusionbased predictive tool for energy consumption prediction(MDLFM-ECP)of RE and NRE power sources.Actual data may influence the prediction performance of the results in prediction approaches.The proposed MDLFMECP technique involves pre-processing,fusion-based prediction,and hyperparameter optimization.In addition,the MDLFM-ECP technique involves the fusion of four deep learning(DL)models,namely long short-termmemory(LSTM),bidirectional LSTM(Bi-LSTM),deep belief network(DBN),and gated recurrent unit(GRU).Moreover,the chaotic cat swarm optimization(CCSO)algorithm is applied to tune the hyperparameters of the DL models.The design of the CCSO algorithm for optimal hyperparameter tuning of the DL models,showing the novelty of the work.A series of simulations took place to validate the superior performance of the proposed method,and the simulation outcome emphasized the improved results of the MDLFM-ECP technique over the recent approaches with minimum overall mean absolute percentage error of 3.58%.展开更多
We discuss novel advanced concepts suitable for the practical design of gamma-ray sources of directed energy. One concept is based on the self-channeling of a powerful optical laser in a gas within a metal tube. Anoth...We discuss novel advanced concepts suitable for the practical design of gamma-ray sources of directed energy. One concept is based on the self-channeling of a powerful optical laser in a gas within a metal tube. Another concept employs a direct excitation of a quadrupole nuclear level by a powerful optical laser. The third concept is based on the process of a high-order harmonic generation by an x-ray laser. All three concepts can be used for designing gamma-ray lasers that would have significant advantages over x-ray lasers. First, missile defense systems employing gamma-ray lasers would be weather independent. Second, the gamma-ray laser radiation can penetrate through the sand, which could be suspended in the air in a desert either naturally (due to strong winds) or artificially (as a protective “shield”). Besides, the first out of the three concepts can beemployed for creating non-laser gamma-ray sources of directed energy to be used for detecting stored radioactive materials, including the radioactive materials carried by an aircraft or a satellite. Last but not least: these concepts can be also used for remotely destroying biological and chemical weapons as a preemptive strike or during its delivery phase, as well as for distinguishing a nuclear warhead from decoy warheads. Thus, the defense capabilities of the proposed gamma-ray lasers can save numerous lives.展开更多
Cattle dung, firewood, and crop straw have being used as survival necessities by farmers and herdsmen for thousands of years in Tibet. Until recently such biotic energy source still constitutes more than 92 per cent o...Cattle dung, firewood, and crop straw have being used as survival necessities by farmers and herdsmen for thousands of years in Tibet. Until recently such biotic energy source still constitutes more than 92 per cent of total rural energy consumption due to lack of petroleum, coal and new alternative energy sources. As a result, environmental degradation such as land desertification, soil erosion, grassland degradation and soil fertility reduction is increasingly aggravated, the area of desertified land has increased 1467.5 km2 from 1991 to 1997. Degraded area of grassland has reached 2.60×107hm2, increased by 116.1% from 1987 to 1996. To prevent further deterioration of eco-environment in Tibet great efforts should be made to make full use of ample solar energy, wind energy and other biotic energy of the Qinghai-Tibet Plateau. The solar cooking stoves and solar hothouse, expand forest area and replace existing abiotic energy sources with firewood forest should be popularized. This is an urgent task to protect the eco-environment of Tibet today.展开更多
An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside di...An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.展开更多
An ionic liquid ion source(ILIS)is a kind of high brightness ion source capable of providing high-speed positive or negative ion beams.This paper presents a miniaturized ILIS based on an array of porous metal strips.T...An ionic liquid ion source(ILIS)is a kind of high brightness ion source capable of providing high-speed positive or negative ion beams.This paper presents a miniaturized ILIS based on an array of porous metal strips.The porous emitter array,integrated with seven 10 mm long strips,is fabricated using wire electrical discharge machining(WEDM)combined with electrochemical etching.The assembled ILIS is 30 mm×30 mm×17.5 mm in size and weighs less than 25 g.A series of experiments,including anⅠ-Ⅴcharacteristic test,a retarding potential analyzer(RPA)test,and a spatial plume distribution test,have been conducted in vacuo to characterize the performance of the ILIS.Results show that the emitted current is up to about 800μA and ion transparency is as high as 94%.Besides,RPA curves reveal that the total fragmentation rate of the emitted particles accounts for 48.8%in positive mode and 59.8%in negative mode.Further,with the increase in applied acceleration voltage,the voltage loss rises while the energy efficiency decreases.It is also found that the plume perpendicular to the strips has a higher divergence than the one parallel to the strips.A numerical simulation by COMSOL reveals that the electric field distribution between the two electrodes results in such a spatial plume profile.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of th...In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of the Junggar Basin in Northwest China are taken as research objects.More than 60 MLJ samples were collected from outcrops and wells.Total organic carbon(TOC),rock pyrolysis(Rock-Eval),organic petrological,vitrinite reflectance(%Ro),and hydrous pyrolysis were performed to analyze the relevant samples.The pyrolysis gases and liquid products were measured,and then the chemical composition,as well as carbon isotopes of the gases,were analyzed.The results indicate that the MLJ source rocks have the capacity for large-scale gas generation.In addition,for coal-measure source rocks,the heavier the carbon isotope of kerogen(δ^(13)C_(kerogen)),the lower the liquid hydrocarbon and hydrocarbon gas yield,and the easier it is to produce non-hydrocarbon gas.It is worth noting that when theδ^(13)C_(kerogen)in organic matter(OM)is relatively heavier,the fractionation of its products may become weaker in the evolutionary process.The vital contribution of the MLJ source rock to natural gas resources in the study area was further confirmed by comparing it with the Jurassic source gas.展开更多
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink...Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.展开更多
Ochrobactrum anthropi CTS-325 isolated from a chromium-contaminated site had better resistance to Cr(Ⅵ) in LB medium under aerobic condition.Meanwhile,it was found that the reduction of Cr(Ⅵ) is not complete dur...Ochrobactrum anthropi CTS-325 isolated from a chromium-contaminated site had better resistance to Cr(Ⅵ) in LB medium under aerobic condition.Meanwhile,it was found that the reduction of Cr(Ⅵ) is not complete during the experimental process.Therefore,a series of small molecule energy sources including nitrogen and carbon sources were added into the LB medium in the bacterial stationary phase to promote the chromium reducibility.The result showed that the bacterial growth was positively correlated with the chromium reduction.SDS-PAGE analysis indicated that the protein groups were changed when the bacteria were stimulated by the chromium.Additionally,it was revealed that O.anthropi CTS-325 could utilize the cheaper alternative of sugar(sucrose residue leaching solution) well for further growth and restart the chromium reduction,which offered a new method for practical appli-cations.展开更多
New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the depen...New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the dependence of RES on natural conditions of region, schedule of energy supply, parameters and configuration of distribution network is suggested in the paper. Results of computations of test scheme confirm the efficiency of the proposed method and its simplicity as compared with the methods considered in literature sources.展开更多
This Article discusses a comprehensive review of biomass energy sources, environment and sustainable development. This includes all the biomass energy technologies, energy efficiency systems, energy conservation scena...This Article discusses a comprehensive review of biomass energy sources, environment and sustainable development. This includes all the biomass energy technologies, energy efficiency systems, energy conservation scenarios, energy savings and other mitigation measures necessary to reduce emissions. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biomass technology. This article gives an overview of present and future use of biomass as an industrial feed-stock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biomass technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas.展开更多
In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the...In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.展开更多
We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, di...We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.展开更多
The author puts forward the pattern of optimizing the structure of energy sources for generating power in the early stage of the 21st century in Fujian Province; analyzes imper’tant functions on speeding up nuclear p...The author puts forward the pattern of optimizing the structure of energy sources for generating power in the early stage of the 21st century in Fujian Province; analyzes imper’tant functions on speeding up nuclear power for adjusting the structure of energy sources and heightening economic benefits.and suggests that the first liquefied natural gas combined-cycle power plant will start to build at the end of this century and every effort is made so as to change the recent unreasonable structure of energy source step by step and form the optimized structure of energy sources for generating power, that includes hydropower, thermal power (coal, oil and natural gas), nuclear power, pumpedstorage power, and power from new energy sources. In order to reach the abovementioned significant target, the author discusses the technical and economic measures and the supporting policy to be taken at present and in future.展开更多
To investigate the genetic diversity and relationships among the sweet sorghum varieties as energy sources currently bred in China, 13 sweet sorghum varieties were selected for comprehensive analysis through observati...To investigate the genetic diversity and relationships among the sweet sorghum varieties as energy sources currently bred in China, 13 sweet sorghum varieties were selected for comprehensive analysis through observations of 31 biological traits and examinations of RAPD and SSR molecular markers. The numerical analysis showed that the differences in biological traits existed among 13 varieties, and the genetic distance (DIST) ranged from 0.787 to 2.221, and the two varieties from Inner Mongolia and Xinjiang were distinctly separated from all other varieties. A total of 22 polymorphism primers were obtained from the screening using RAPD marker analysis. The polymorphism rate was 58.33%, and the genetic similarity (GS) coefficients among the studied cultivars ranged from 0.694 to 0.896. Cluster analysis results indicated that the three varieties from Inner Mongolia, Xinjiang and Heilongjiang exhibited significant genetic differences from the other varieties. SSR marker analysis using 31 selected pairs of polymorphic primers showed that the polymorphism rate of amplified fragments was 78.64%, and GS coefficients among the tested cultivars were 0.534 to 0.971. Cluster analysis showed that variety No. 12 from Xinjiang and variety No. 7 from Inner Mongolia clustered into one group, and variety No. 6 from Heilongjiang was in a single group. The other ten varieties were grouped into another separate cluster. The results based on combined data displayed a similar trend with results from the three individual data analyses, but could more comprehensively and objectively reflect the fundamental genetic differences among these varieties. In summary, certain genetic differences exist among the varieties tested from different regions or different breeding institutions. However, varieties from the same region, especially those from the same breeding institution, exhibited small genetic variations and high genetic similarities. At present, more attention should be paid to discovery and innovation in the breeding of sweet sorghum varieties.展开更多
文摘In the past decade or so,AI(artificial intelligence)technology has been growing with such a mesmerizing speed that today its presence in almost any industry that deals with any huge sheer volume of data is taking advantage of AI by integrating it into their day-to-day operation.Meanwhile,seven billion people worldwide shape the world’s energy system and directly impact the fundamental drivers of energy,both renewable and non-renewable sources,to meet the demand for electricity from them.These energy sources can be reached from nature such as solar,wind,etc.,and human-made such as NPPs(nuclear power plants)in the form of either fission as an old technology since the Manhattan project and in the near future as fusion in the form of magnetic or inertial confinements.Meanwhile,AI controlling nuclear reactors are about to happen.The basic idea is to apply AI with its two subset components as ML(machine learning),and DL(deep learning)techniques to go through the mountains of data that come from a reactor,spot patterns in it,and calling them to the unit’s human attention operators is not invadable either.Designers of such nuclear reactors will combine simulation and real-world data,comparing scenarios from each to develop“confidence[in]what they can predict and what is the range of uncertainty of their prediction”.Adding that,in the end,the operator will make the final decisions in order to keep these power plants safe while they are in operation and how to secure them against cyber-attack natural or human-made disasters.In this short communication article,we would like to see how we can prove some of these concepts;then a NPP manufacturer can pick it up and use it in their designs of a new generation of these reactors.
基金supported by the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network (XTCX202001)National Natural Science Foundation of China (52077061)。
文摘In an integrated energy system(IES) composed of multiple subsystems, energy coupling causes an energy supply blockage or shutdown in one subsystem, thereby affecting the energy flow distribution optimization of other subsystems.The energy supply should be globally optimized during the IES energy supply restoration process to produce the highest restoration net income. Mobile emergency sources can be quickly and flexibly connected to supply energy after an energy outage to ensure a reliable supply to the system, which adds complexity to the decision. This study focuses on a powergas IES with mobile emergency sources and analyzes the coupling relationship between the gas distribution system and the power distribution system in terms of sources, networks, and loads, and the influence of mobile emergency source transportation. The influence of the transient process caused by the restoration operation of the gas distribution system on the power distribution system is also discussed. An optimization model for power-gas IES restoration was established with the objective of maximizing the net income. The coordinated restoration optimization decision-making process was also built to realize the decoupling iteration of the power-gas IES, including system status recognition, mobile emergency source dispatching optimization, gas-to-power gas flow optimization, and parallel intra-partition restoration scheme optimization for both the power and gas distribution systems. A simulation test power-gas IES consisting of an 81-node medium-voltage power distribution network, an 89-node medium-pressure gas distribution network, and four mobile emergency sources was constructed. The simulation analysis verified the efficiency of the proposed coordinated restoration optimization method.
文摘Boron neutron capture therapy(BNCT)is recognized as a precise binary targeted radiotherapy technique that effectively eliminates tumors through the^(10)B(n,α)^(7)Li nuclear reaction.Among various neutron sources,accelerator-based sources have emerged as particularly promising for BNCT applications.The^(7)Li(p,n)^(7)Be reaction is highly regarded as a potential neutron source for BNCT,owing to its low threshold energy for the reaction,significant neutron yield,appropriate average neutron energy,and additional benefits.This study utilized Monte Carlo simulations to model the physical interactions within a lithium target subjected to proton bombardment,including neutron moderation by an MgF_(2)moderator and subsequent BNCT dose analysis using a Snyder head phantom.The study focused on calculating the yields of epithermal neutrons for various incident proton energies,finding an optimal energy at 2.7 MeV.Furthermore,the Snyder head phantom was employed in dose simulations to validate the effectiveness of this specific incident energy when utilizing a^(7)Li(p,n)^(7)Be neutron source for BNCT purposes.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under grant number(71/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2023R203)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR61This study is supported via funding from Prince Sattam bin Abdulaziz University project number(PSAU/2023/R/1444).
文摘Recently,renewable energy(RE)has become popular due to its benefits,such as being inexpensive,low-carbon,ecologically friendly,steady,and reliable.The RE sources are gradually combined with non-renewable energy(NRE)sources into electric grids to satisfy energy demands.Since energy utilization is highly related to national energy policy,energy prediction using artificial intelligence(AI)and deep learning(DL)based models can be employed for energy prediction on RE and NRE power resources.Predicting energy consumption of RE and NRE sources using effective models becomes necessary.With this motivation,this study presents a new multimodal fusionbased predictive tool for energy consumption prediction(MDLFM-ECP)of RE and NRE power sources.Actual data may influence the prediction performance of the results in prediction approaches.The proposed MDLFMECP technique involves pre-processing,fusion-based prediction,and hyperparameter optimization.In addition,the MDLFM-ECP technique involves the fusion of four deep learning(DL)models,namely long short-termmemory(LSTM),bidirectional LSTM(Bi-LSTM),deep belief network(DBN),and gated recurrent unit(GRU).Moreover,the chaotic cat swarm optimization(CCSO)algorithm is applied to tune the hyperparameters of the DL models.The design of the CCSO algorithm for optimal hyperparameter tuning of the DL models,showing the novelty of the work.A series of simulations took place to validate the superior performance of the proposed method,and the simulation outcome emphasized the improved results of the MDLFM-ECP technique over the recent approaches with minimum overall mean absolute percentage error of 3.58%.
文摘We discuss novel advanced concepts suitable for the practical design of gamma-ray sources of directed energy. One concept is based on the self-channeling of a powerful optical laser in a gas within a metal tube. Another concept employs a direct excitation of a quadrupole nuclear level by a powerful optical laser. The third concept is based on the process of a high-order harmonic generation by an x-ray laser. All three concepts can be used for designing gamma-ray lasers that would have significant advantages over x-ray lasers. First, missile defense systems employing gamma-ray lasers would be weather independent. Second, the gamma-ray laser radiation can penetrate through the sand, which could be suspended in the air in a desert either naturally (due to strong winds) or artificially (as a protective “shield”). Besides, the first out of the three concepts can beemployed for creating non-laser gamma-ray sources of directed energy to be used for detecting stored radioactive materials, including the radioactive materials carried by an aircraft or a satellite. Last but not least: these concepts can be also used for remotely destroying biological and chemical weapons as a preemptive strike or during its delivery phase, as well as for distinguishing a nuclear warhead from decoy warheads. Thus, the defense capabilities of the proposed gamma-ray lasers can save numerous lives.
文摘Cattle dung, firewood, and crop straw have being used as survival necessities by farmers and herdsmen for thousands of years in Tibet. Until recently such biotic energy source still constitutes more than 92 per cent of total rural energy consumption due to lack of petroleum, coal and new alternative energy sources. As a result, environmental degradation such as land desertification, soil erosion, grassland degradation and soil fertility reduction is increasingly aggravated, the area of desertified land has increased 1467.5 km2 from 1991 to 1997. Degraded area of grassland has reached 2.60×107hm2, increased by 116.1% from 1987 to 1996. To prevent further deterioration of eco-environment in Tibet great efforts should be made to make full use of ample solar energy, wind energy and other biotic energy of the Qinghai-Tibet Plateau. The solar cooking stoves and solar hothouse, expand forest area and replace existing abiotic energy sources with firewood forest should be popularized. This is an urgent task to protect the eco-environment of Tibet today.
基金Project(51178201) supported by the National Natural Science Foundation of China Project(2011CDB292) supported by the Natural Science Foundation of Hubei Province,China
文摘An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.
基金supported by National Natural Science Foundation of China(No.52075334)。
文摘An ionic liquid ion source(ILIS)is a kind of high brightness ion source capable of providing high-speed positive or negative ion beams.This paper presents a miniaturized ILIS based on an array of porous metal strips.The porous emitter array,integrated with seven 10 mm long strips,is fabricated using wire electrical discharge machining(WEDM)combined with electrochemical etching.The assembled ILIS is 30 mm×30 mm×17.5 mm in size and weighs less than 25 g.A series of experiments,including anⅠ-Ⅴcharacteristic test,a retarding potential analyzer(RPA)test,and a spatial plume distribution test,have been conducted in vacuo to characterize the performance of the ILIS.Results show that the emitted current is up to about 800μA and ion transparency is as high as 94%.Besides,RPA curves reveal that the total fragmentation rate of the emitted particles accounts for 48.8%in positive mode and 59.8%in negative mode.Further,with the increase in applied acceleration voltage,the voltage loss rises while the energy efficiency decreases.It is also found that the plume perpendicular to the strips has a higher divergence than the one parallel to the strips.A numerical simulation by COMSOL reveals that the electric field distribution between the two electrodes results in such a spatial plume profile.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金financially supported by Xinjiang Oilfield Company of China(Grant No.2020-C4006)。
文摘In order to study the hydrocarbon generation(HCGE)characteristics of coal-bearing basins,the coal-measure source rocks of the Middle Jurassic-Lower Jurassic(MLJ)of the piedmont thrust belt in the southern margin of the Junggar Basin in Northwest China are taken as research objects.More than 60 MLJ samples were collected from outcrops and wells.Total organic carbon(TOC),rock pyrolysis(Rock-Eval),organic petrological,vitrinite reflectance(%Ro),and hydrous pyrolysis were performed to analyze the relevant samples.The pyrolysis gases and liquid products were measured,and then the chemical composition,as well as carbon isotopes of the gases,were analyzed.The results indicate that the MLJ source rocks have the capacity for large-scale gas generation.In addition,for coal-measure source rocks,the heavier the carbon isotope of kerogen(δ^(13)C_(kerogen)),the lower the liquid hydrocarbon and hydrocarbon gas yield,and the easier it is to produce non-hydrocarbon gas.It is worth noting that when theδ^(13)C_(kerogen)in organic matter(OM)is relatively heavier,the fractionation of its products may become weaker in the evolutionary process.The vital contribution of the MLJ source rock to natural gas resources in the study area was further confirmed by comparing it with the Jurassic source gas.
文摘Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.
基金Supported by the National Basic Research Program of China (973 program,No. 2007CB815601,2010CB933501)the National Natural Science Foundation of China (40772034, 40902097)+2 种基金 the Outstanding Youth Fund (50625205) the Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (No. 09zxgk05),Ministry of Educationthe CAS Foundation (KJCX1.YW.07)
文摘Ochrobactrum anthropi CTS-325 isolated from a chromium-contaminated site had better resistance to Cr(Ⅵ) in LB medium under aerobic condition.Meanwhile,it was found that the reduction of Cr(Ⅵ) is not complete during the experimental process.Therefore,a series of small molecule energy sources including nitrogen and carbon sources were added into the LB medium in the bacterial stationary phase to promote the chromium reducibility.The result showed that the bacterial growth was positively correlated with the chromium reduction.SDS-PAGE analysis indicated that the protein groups were changed when the bacteria were stimulated by the chromium.Additionally,it was revealed that O.anthropi CTS-325 could utilize the cheaper alternative of sugar(sucrose residue leaching solution) well for further growth and restart the chromium reduction,which offered a new method for practical appli-cations.
文摘New method for determination of optimal placement and value of installed capacity of renewable source of energy (RES) by the criterion of minimum losses of active power, that allows taking into consideration the dependence of RES on natural conditions of region, schedule of energy supply, parameters and configuration of distribution network is suggested in the paper. Results of computations of test scheme confirm the efficiency of the proposed method and its simplicity as compared with the methods considered in literature sources.
文摘This Article discusses a comprehensive review of biomass energy sources, environment and sustainable development. This includes all the biomass energy technologies, energy efficiency systems, energy conservation scenarios, energy savings and other mitigation measures necessary to reduce emissions. The current literature is reviewed regarding the ecological, social, cultural and economic impacts of biomass technology. This article gives an overview of present and future use of biomass as an industrial feed-stock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results suggest that biomass technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas.
文摘In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.
文摘We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.
文摘The author puts forward the pattern of optimizing the structure of energy sources for generating power in the early stage of the 21st century in Fujian Province; analyzes imper’tant functions on speeding up nuclear power for adjusting the structure of energy sources and heightening economic benefits.and suggests that the first liquefied natural gas combined-cycle power plant will start to build at the end of this century and every effort is made so as to change the recent unreasonable structure of energy source step by step and form the optimized structure of energy sources for generating power, that includes hydropower, thermal power (coal, oil and natural gas), nuclear power, pumpedstorage power, and power from new energy sources. In order to reach the abovementioned significant target, the author discusses the technical and economic measures and the supporting policy to be taken at present and in future.
文摘To investigate the genetic diversity and relationships among the sweet sorghum varieties as energy sources currently bred in China, 13 sweet sorghum varieties were selected for comprehensive analysis through observations of 31 biological traits and examinations of RAPD and SSR molecular markers. The numerical analysis showed that the differences in biological traits existed among 13 varieties, and the genetic distance (DIST) ranged from 0.787 to 2.221, and the two varieties from Inner Mongolia and Xinjiang were distinctly separated from all other varieties. A total of 22 polymorphism primers were obtained from the screening using RAPD marker analysis. The polymorphism rate was 58.33%, and the genetic similarity (GS) coefficients among the studied cultivars ranged from 0.694 to 0.896. Cluster analysis results indicated that the three varieties from Inner Mongolia, Xinjiang and Heilongjiang exhibited significant genetic differences from the other varieties. SSR marker analysis using 31 selected pairs of polymorphic primers showed that the polymorphism rate of amplified fragments was 78.64%, and GS coefficients among the tested cultivars were 0.534 to 0.971. Cluster analysis showed that variety No. 12 from Xinjiang and variety No. 7 from Inner Mongolia clustered into one group, and variety No. 6 from Heilongjiang was in a single group. The other ten varieties were grouped into another separate cluster. The results based on combined data displayed a similar trend with results from the three individual data analyses, but could more comprehensively and objectively reflect the fundamental genetic differences among these varieties. In summary, certain genetic differences exist among the varieties tested from different regions or different breeding institutions. However, varieties from the same region, especially those from the same breeding institution, exhibited small genetic variations and high genetic similarities. At present, more attention should be paid to discovery and innovation in the breeding of sweet sorghum varieties.