为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heav...为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。展开更多
为提高非正交多址接入(non-orthogonal multiple access,NOMA)增强型设备到设备(device-to-device,D2D)组链路的鲁棒性和能效,考虑非理想信道状态信息(channel station information,CSI),提出一种能效优化的鲁棒资源分配算法.首先,在保...为提高非正交多址接入(non-orthogonal multiple access,NOMA)增强型设备到设备(device-to-device,D2D)组链路的鲁棒性和能效,考虑非理想信道状态信息(channel station information,CSI),提出一种能效优化的鲁棒资源分配算法.首先,在保证子信道分配、蜂窝用户和D2D组最小速率以及D2D组最大传输功率约束下,建立最大最小鲁棒能效模型;其次,考虑最坏情况法将信道不确定性建模为有界信道估计误差,并用泰勒级数展开式、凸松弛、变量转换法将原多变量耦合问题转化为凸优化问题;最后,用拉格朗日对偶理论求解.仿真结果表明,所提出的算法将传输速率控制在最低速率阈值以上,具有良好的鲁棒性,与其他算法相比能效提高了8.3%.展开更多
文摘为降低实际应用中由强未知干扰和仪器故障对观测造成的影响,减轻随机和未建模干扰对系统的侵蚀,从而提升系统在非高斯噪声环境下的状态估计精度,提高滤波器的鲁棒性能,提出了一种基于高斯-重尾切换分布的鲁棒卡尔曼滤波器(Gaussian-heavy-tailed switching distribution based robust Kalman filter,GHTSRKF)。首先,通过自适应学习高斯分布和一种重尾分布之间的切换概率将噪声建模为GHTS(Gaussian-heavy-tailed switching)分布,所设计的GHTS分布可以通过在线调整高斯分布和新的重尾分布之间的切换概率来对非平稳重尾噪声进行建模,具有虚拟协方差的高斯分布用于处理协方差矩阵不准确的高斯噪声。其次,引入两个分别服从Categorical分布与伯努利分布的辅助参数将GHTS分布表示为一个分层高斯形式,进一步利用变分贝叶斯方法推导了GHTSRKF。最后,利用一个仿真场景对几种不同的RKFs(robust Kalman filters)进行了对比验证。结果表明,所提出的GHTSRKF算法的估计精度对初始状态的选取不敏感,精度优于其他RKFs,它的RMSEs最接近噪声信息准确的KFTNC(KF with true noise covariances)的RMSEs(root mean square errors),且当系统与量测噪声是未知时变高斯噪声时,相比于现有的滤波器,GHTSRKF具有更好的估计性能,从而验证了GHTSRKF的有效性。
文摘为提高非正交多址接入(non-orthogonal multiple access,NOMA)增强型设备到设备(device-to-device,D2D)组链路的鲁棒性和能效,考虑非理想信道状态信息(channel station information,CSI),提出一种能效优化的鲁棒资源分配算法.首先,在保证子信道分配、蜂窝用户和D2D组最小速率以及D2D组最大传输功率约束下,建立最大最小鲁棒能效模型;其次,考虑最坏情况法将信道不确定性建模为有界信道估计误差,并用泰勒级数展开式、凸松弛、变量转换法将原多变量耦合问题转化为凸优化问题;最后,用拉格朗日对偶理论求解.仿真结果表明,所提出的算法将传输速率控制在最低速率阈值以上,具有良好的鲁棒性,与其他算法相比能效提高了8.3%.