Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpans...Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.展开更多
In this paper, some iterative schemes for approximating the common element of the set of zero points of maximal monotone operators and the set of fixed points of relatively nonexpansive mappings in a real uniformly sm...In this paper, some iterative schemes for approximating the common element of the set of zero points of maximal monotone operators and the set of fixed points of relatively nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are proposed. Some strong convergence theorems are obtained, to extend the previous work.展开更多
In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of th...In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].展开更多
This paper studies the convergence of the sequence defined by x0 ∈ C, xn+l =αnu+(1-αn)Txn, n=0, 1,2,..., where 0 ≤αn ≤ 1, limn→∞ αn = 0, ∑n=0^∞ αn = ∞, and T is a nonexpansive mapping from a nonempty...This paper studies the convergence of the sequence defined by x0 ∈ C, xn+l =αnu+(1-αn)Txn, n=0, 1,2,..., where 0 ≤αn ≤ 1, limn→∞ αn = 0, ∑n=0^∞ αn = ∞, and T is a nonexpansive mapping from a nonempty closed convex subset C of a Banach space X into itself. The iterative sequence {xn} converges strongly to a fixed point of T in the case when X is a uniformly convex Banach space with a uniformly Gateaux differentiable norm or a uniformly smooth Banach space only. The results presented in this paper extend and improve some recent results.展开更多
The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. We prove that the sequence generated by the proposed new algorithm converge...The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. We prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the general split feasibility problem. Our results extend and improve some recent known results.展开更多
This article introduces the concept of commutative semigroups of almost asymptotically nonexpansive-type mappings in a Banach space X which has the Opial property and whose norm is UKK, and establishes the weak conver...This article introduces the concept of commutative semigroups of almost asymptotically nonexpansive-type mappings in a Banach space X which has the Opial property and whose norm is UKK, and establishes the weak convergence theorems for almostorbits of this class of commutative semigroups. The author improves, extends and develops some recent and earlier results.展开更多
The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- ? -asymptotically nonexpansive multi-valued mappings and establish some strong c...The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- ? -asymptotically nonexpansive multi-valued mappings and establish some strong convergence theorems under certain conditions. We utilize the theorems to study a modified Halpern-type iterative algorithm for a system of equilibrium problems. The results improve and extend the corresponding results of Chang et al. (Applied Mathematics and Computation, 218, 6489-6497).展开更多
The purpose of this article is to study the weak and strong convergence of implicit iteration process with errors to a common fixed point for a finite family of asymptotically nonexpansive mappings and nonexpansive ma...The purpose of this article is to study the weak and strong convergence of implicit iteration process with errors to a common fixed point for a finite family of asymptotically nonexpansive mappings and nonexpansive mappings in Banach spaces. The results presented in this article extend and improve the corresponding results of [1, 2, 4-9, 11-15].展开更多
Some Fixed point theorems for mappings of the type - A + T are established, where P is a cone in a Hilbert space, A: P --> 2(P) is an accretive mappings and T: P --> P is a nonexpansive mappings. In application,...Some Fixed point theorems for mappings of the type - A + T are established, where P is a cone in a Hilbert space, A: P --> 2(P) is an accretive mappings and T: P --> P is a nonexpansive mappings. In application, the results presented in the paper are used to study the existence problem of solutions far a class of nonlinear integral equations in L-2 (Omega).展开更多
The purpose is by using the viscosity approximation method to study the convergence problem of the iterative scheme for an infinite family of nonexpansive mappings and a given contractive mapping in a reflexive Banach...The purpose is by using the viscosity approximation method to study the convergence problem of the iterative scheme for an infinite family of nonexpansive mappings and a given contractive mapping in a reflexive Banach space. Under suitable conditions, it was proved that the iterative sequence converges strongly to a common fixed point which was also the unique solution of some variational inequality in a reflexive Banach space. The results presented extend and improve some recent results.展开更多
We introduce a one-step implicit iterative method for two finite families of asymptotically nonexpansive mappings in a hyperbolic space and use it to approximate common fixed points of these families. The results pres...We introduce a one-step implicit iterative method for two finite families of asymptotically nonexpansive mappings in a hyperbolic space and use it to approximate common fixed points of these families. The results presented in this paper are new in the setting of hyperbolic spaces. On top, these are generalizations of several results in literature from Banach spaces to hyperbolic spaces. At the end of the paper, we give an example to validate our results.展开更多
In this paper, some new iterative schemes for approximating the common element of the set of fixed points of strongly relatively nonexpansive mappings and the set of zero points of maximal monotone operators in a real...In this paper, some new iterative schemes for approximating the common element of the set of fixed points of strongly relatively nonexpansive mappings and the set of zero points of maximal monotone operators in a real uniformly smooth and uniformly convex Banach space are proposed. Some weak convergence theorems are obtained, which extend and complement some previous work.展开更多
The purpose of this paper is to prove a new weak convergence theorem for a finite family of asymptotically nonexpansive mappings in uniformly convex Banach space.
In this paper, the iteration xn+l =αny + (1 -αn)Ti(n)k(n)xn for a family of asymptotically nonexpansive mappings T1, T2, ..., TN is originally introduced in an uniformly convex Banach space. Motivated by rec...In this paper, the iteration xn+l =αny + (1 -αn)Ti(n)k(n)xn for a family of asymptotically nonexpansive mappings T1, T2, ..., TN is originally introduced in an uniformly convex Banach space. Motivated by recent papers, we prove that under suitable conditions the iteration scheme converges strongly to the nearest common fixed point of the family of asymptotically nonexpansive mappings. The results presented in this paper expand and improve correponding ones from Hilbert spaces to uniformly convex Banach spaces, or from nonexpansive mappings to asymptotically nonexpansive mappings.展开更多
We use an iteration scheme to approximate common fixed points of nearly asymptotically nonexpansive mappings. We generalize corresponding theorems of [1] to the case of two nearly asymptotically nonexpansive mappings ...We use an iteration scheme to approximate common fixed points of nearly asymptotically nonexpansive mappings. We generalize corresponding theorems of [1] to the case of two nearly asymptotically nonexpansive mappings and those of [9] not only to a larger class of mappings but also with better rate of convergence.展开更多
The purpose of this paper is to study a new two-step iterative scheme with mean errors of mixed type for two asymptotically nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings and prove str...The purpose of this paper is to study a new two-step iterative scheme with mean errors of mixed type for two asymptotically nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings and prove strong convergence theorems for the new two-step iterative scheme in uniformly convex Banach spaces.展开更多
A new class of almost asymptotically nonexpansive type mappings in Banach spaces is introduced,which includes a number of known classes of nonlinear Lipschitzian mappings and non_Lipschitzian mappings in Banach spaces...A new class of almost asymptotically nonexpansive type mappings in Banach spaces is introduced,which includes a number of known classes of nonlinear Lipschitzian mappings and non_Lipschitzian mappings in Banach spaces as special cases; for example,the known classes of nonexpansive mappings,asymptotically nonexpansive mappings and asymptotically nonexpansive type mappings.The convergence problem of modified Ishikawa iterative sequences with errors for approximating fixed points of almost asymptotically nonexpansive type mappings is considered.Not only S.S.Chang's inequality but also H.K.Xu's one for the norms of Banach spaces are applied to make the error estimate between the exact fixed point and the approximate one.Moreover,Zhang Shi_sheng's method(Applied Mathematics and Mechanics(English Edition),2001,22(1):25-34) for making the convergence analysis of modified Ishikawa iterative sequences with errors is extended to the case of almost asymptotically nonexpansive type mappings. The new convergence criteria of modified Ishikawa iterative sequences with errors for finding fixed points of almost asymptotically nonexpansive type mappings in uniformly convex Banach spaces are presented. Also,the new convergence criteria of modified Mann iterative sequences with errors for this class of mappings are immediately obtained from these criteria.The above results unify,improve and generalize Zhang Shi_sheng's ones on approximating fixed points of asymptotically nonexpansive type mappings by the modified Ishikawa and Mann iterative sequences with errors.展开更多
Let C be a closed convex weakly Cauchy subset of a normed space X. Then we define a new {a,b,c} type nonexpansive and {a,b,c} type contraction mapping T from C into C. These types of mappings will be denoted respectiv...Let C be a closed convex weakly Cauchy subset of a normed space X. Then we define a new {a,b,c} type nonexpansive and {a,b,c} type contraction mapping T from C into C. These types of mappings will be denoted respectively by {a,b,c}-ntype and {a,b,c}-ctype. We proved the following: 1. If T is {a,b,c}-ntype mapping, then inf{ || T(x)-x|| :x C C} =0, accordingly T has a unique fixed point. Moreover, any sequence {Xn}n∈NN in C with limn→∞||T(xn) - Xn|| = 0 has a subsequence strongly convergent to the unique fixed point of T. 2. If T is {a,b,c}-ctype mapping, then T has a unique fixed point. Moreover, for any x∈C the sequence of iterates {Tn (x)}n∈N has subsequence strongly convergent to the unique fixed point of T. This paper extends and generalizes some of the results given in [2,4, 7] and [13].展开更多
This paper is devoted to study the convergence of a new class of generalized system for variational inequalities.The results presented in this paper modify and improve the recent result announced by Chang.[S.S.Chang,H...This paper is devoted to study the convergence of a new class of generalized system for variational inequalities.The results presented in this paper modify and improve the recent result announced by Chang.[S.S.Chang,H.W.Joseph Lee,Generalzed system for relaxed cocoercive variational inequalities in Hilerbert space,doi:10.1016/j.aml.2006.04.017].展开更多
基金Supported both by the National Natural Science Foundation(1 980 1 0 2 3 ) and the Teaching and ResearchAward Fund for Outstanding Young Teachers in Higher Education Institutions of MOEP.R.C
文摘Let E be a uniformly convex Banach space which satisfies Opial's condition or has a Frechet differentiable norm,and C be a bounded closed convex subset of E. If T∶C→C is (asymptotically)nonexpansive,then the modified Ishikawa iteration process defined byx n+1 =t nT ns nT nx n+1-s nx n+(1-t n)x n,converges weakly to a fixed point of T ,where {t n} and {s n} are sequences in [0,1] with some restrictions.
基金the National Natural Science Foundation of China (10771050)
文摘In this paper, some iterative schemes for approximating the common element of the set of zero points of maximal monotone operators and the set of fixed points of relatively nonexpansive mappings in a real uniformly smooth and uniformly convex Banach space are proposed. Some strong convergence theorems are obtained, to extend the previous work.
基金the Thailand Research Fund for financial support under Grant BRG5280016
文摘In this article, we introduce a new viscosity iterative method for two nonexpansive mappings in Hilbert spaces. We also prove, without commutativity assumption, that the iterates converge to a common fixed point of the mappings which solves some variational inequality. The results presented extend the corresponding results of Shimizu and Takahashi IT. Shimizu, W. Takahashi, Strong convergence to common fixed point of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83], and Yao and Chen [Y. Yao, R. Chert, Convergence to common fixed points of average mappings without commutativity assumption in Hilbert spaces, Nonlinear Analysis 67(2007), 1758-1763].
基金Supported by the Natural Science Foundation of the Educational Dept.of Zhejiang Province(20020868).
文摘This paper studies the convergence of the sequence defined by x0 ∈ C, xn+l =αnu+(1-αn)Txn, n=0, 1,2,..., where 0 ≤αn ≤ 1, limn→∞ αn = 0, ∑n=0^∞ αn = ∞, and T is a nonexpansive mapping from a nonempty closed convex subset C of a Banach space X into itself. The iterative sequence {xn} converges strongly to a fixed point of T in the case when X is a uniformly convex Banach space with a uniformly Gateaux differentiable norm or a uniformly smooth Banach space only. The results presented in this paper extend and improve some recent results.
基金Supported by the Scientific Research Fund of Sichuan Provincial Department of Science and Technology(2015JY0165,2011JYZ011)the Scientific Research Fund of Sichuan Provincial Education Department(14ZA0271)+2 种基金the Scientific Research Project of Yibin University(2013YY06)the Natural Science Foundation of China Medical University,Taiwanthe National Natural Science Foundation of China(11361070)
文摘The purpose of this article is to introduce a general split feasibility problems for two families of nonexpansive mappings in Hilbert spaces. We prove that the sequence generated by the proposed new algorithm converges strongly to a solution of the general split feasibility problem. Our results extend and improve some recent known results.
基金Project supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Education Institutions of MOE,P.R.C., by the Dawn Program Foundation in Shanghai, and by Shanghai Leading Academic Discipline Project Fund (T0401).
文摘This article introduces the concept of commutative semigroups of almost asymptotically nonexpansive-type mappings in a Banach space X which has the Opial property and whose norm is UKK, and establishes the weak convergence theorems for almostorbits of this class of commutative semigroups. The author improves, extends and develops some recent and earlier results.
文摘The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- ? -asymptotically nonexpansive multi-valued mappings and establish some strong convergence theorems under certain conditions. We utilize the theorems to study a modified Halpern-type iterative algorithm for a system of equilibrium problems. The results improve and extend the corresponding results of Chang et al. (Applied Mathematics and Computation, 218, 6489-6497).
基金The present studies were supported by the Natural Science Foundation of Zhe-jiang Province (Y605191)the Natural Science Foundation of Heilongjiang Province (A0211)the Key Teacher Creating Capacity Fund of Heilongjiang General College (1053G015)the Scientific Research Foundation from Zhejiang Province Education Committee (20051897)the Starting Foundation of Scientific Research from Hangzhou Teacher's College.
文摘The purpose of this article is to study the weak and strong convergence of implicit iteration process with errors to a common fixed point for a finite family of asymptotically nonexpansive mappings and nonexpansive mappings in Banach spaces. The results presented in this article extend and improve the corresponding results of [1, 2, 4-9, 11-15].
基金theMajorScientificResearchFundoftheEducationalCommitteeofSichuanProvince (No .[1 998]1 62‘OnNonlinearEquationResearchofAccret
文摘Some Fixed point theorems for mappings of the type - A + T are established, where P is a cone in a Hilbert space, A: P --> 2(P) is an accretive mappings and T: P --> P is a nonexpansive mappings. In application, the results presented in the paper are used to study the existence problem of solutions far a class of nonlinear integral equations in L-2 (Omega).
基金the Natural Science Foundation of Yibin University (No.2005Z3)
文摘The purpose is by using the viscosity approximation method to study the convergence problem of the iterative scheme for an infinite family of nonexpansive mappings and a given contractive mapping in a reflexive Banach space. Under suitable conditions, it was proved that the iterative sequence converges strongly to a common fixed point which was also the unique solution of some variational inequality in a reflexive Banach space. The results presented extend and improve some recent results.
基金King Fahd University of Petroleum and Minerals for supporting the research project IN121055Higher Education Commission (HEC) of Pakistan for financial support
文摘We introduce a one-step implicit iterative method for two finite families of asymptotically nonexpansive mappings in a hyperbolic space and use it to approximate common fixed points of these families. The results presented in this paper are new in the setting of hyperbolic spaces. On top, these are generalizations of several results in literature from Banach spaces to hyperbolic spaces. At the end of the paper, we give an example to validate our results.
基金Supported by the National Natural Science Foundation of China(10771050)the Natural Science Foun-dation of Hebei Province(A2010001482)
文摘In this paper, some new iterative schemes for approximating the common element of the set of fixed points of strongly relatively nonexpansive mappings and the set of zero points of maximal monotone operators in a real uniformly smooth and uniformly convex Banach space are proposed. Some weak convergence theorems are obtained, which extend and complement some previous work.
文摘The purpose of this paper is to prove a new weak convergence theorem for a finite family of asymptotically nonexpansive mappings in uniformly convex Banach space.
基金The Found(2011Z05)of the Key Project of Yibin University
文摘In this paper, the iteration xn+l =αny + (1 -αn)Ti(n)k(n)xn for a family of asymptotically nonexpansive mappings T1, T2, ..., TN is originally introduced in an uniformly convex Banach space. Motivated by recent papers, we prove that under suitable conditions the iteration scheme converges strongly to the nearest common fixed point of the family of asymptotically nonexpansive mappings. The results presented in this paper expand and improve correponding ones from Hilbert spaces to uniformly convex Banach spaces, or from nonexpansive mappings to asymptotically nonexpansive mappings.
文摘We use an iteration scheme to approximate common fixed points of nearly asymptotically nonexpansive mappings. We generalize corresponding theorems of [1] to the case of two nearly asymptotically nonexpansive mappings and those of [9] not only to a larger class of mappings but also with better rate of convergence.
文摘The purpose of this paper is to study a new two-step iterative scheme with mean errors of mixed type for two asymptotically nonexpansive self-mappings and two asymptotically nonexpansive nonself-mappings and prove strong convergence theorems for the new two-step iterative scheme in uniformly convex Banach spaces.
文摘A new class of almost asymptotically nonexpansive type mappings in Banach spaces is introduced,which includes a number of known classes of nonlinear Lipschitzian mappings and non_Lipschitzian mappings in Banach spaces as special cases; for example,the known classes of nonexpansive mappings,asymptotically nonexpansive mappings and asymptotically nonexpansive type mappings.The convergence problem of modified Ishikawa iterative sequences with errors for approximating fixed points of almost asymptotically nonexpansive type mappings is considered.Not only S.S.Chang's inequality but also H.K.Xu's one for the norms of Banach spaces are applied to make the error estimate between the exact fixed point and the approximate one.Moreover,Zhang Shi_sheng's method(Applied Mathematics and Mechanics(English Edition),2001,22(1):25-34) for making the convergence analysis of modified Ishikawa iterative sequences with errors is extended to the case of almost asymptotically nonexpansive type mappings. The new convergence criteria of modified Ishikawa iterative sequences with errors for finding fixed points of almost asymptotically nonexpansive type mappings in uniformly convex Banach spaces are presented. Also,the new convergence criteria of modified Mann iterative sequences with errors for this class of mappings are immediately obtained from these criteria.The above results unify,improve and generalize Zhang Shi_sheng's ones on approximating fixed points of asymptotically nonexpansive type mappings by the modified Ishikawa and Mann iterative sequences with errors.
文摘Let C be a closed convex weakly Cauchy subset of a normed space X. Then we define a new {a,b,c} type nonexpansive and {a,b,c} type contraction mapping T from C into C. These types of mappings will be denoted respectively by {a,b,c}-ntype and {a,b,c}-ctype. We proved the following: 1. If T is {a,b,c}-ntype mapping, then inf{ || T(x)-x|| :x C C} =0, accordingly T has a unique fixed point. Moreover, any sequence {Xn}n∈NN in C with limn→∞||T(xn) - Xn|| = 0 has a subsequence strongly convergent to the unique fixed point of T. 2. If T is {a,b,c}-ctype mapping, then T has a unique fixed point. Moreover, for any x∈C the sequence of iterates {Tn (x)}n∈N has subsequence strongly convergent to the unique fixed point of T. This paper extends and generalizes some of the results given in [2,4, 7] and [13].
基金This research is supported by National Natural Science Foundation of China(10871226)
文摘This paper is devoted to study the convergence of a new class of generalized system for variational inequalities.The results presented in this paper modify and improve the recent result announced by Chang.[S.S.Chang,H.W.Joseph Lee,Generalzed system for relaxed cocoercive variational inequalities in Hilerbert space,doi:10.1016/j.aml.2006.04.017].