Given any Coxeter group, we define rigid reflections and rigid roots using non-self-intersecting curves on a Riemann surface with labeled curves. When the Coxeter group arises from an acyclic quiver, they are related ...Given any Coxeter group, we define rigid reflections and rigid roots using non-self-intersecting curves on a Riemann surface with labeled curves. When the Coxeter group arises from an acyclic quiver, they are related to the rigid representations of the quiver. For a family of rank 3 Coxeter groups, we show that there is a surjective map from the set of reduced positive roots of a rank 2 Kac-Moody algebra onto the set of rigid reflections. We conjecture that this map is bijective.展开更多
基金supported by a grant from the Simons Foundation (Grant No. 318706)supported by National Science Foundation of USA (Grant No. DMS 1800207)the University of Nebraska-LincolnKorea Institute for Advanced Study
文摘Given any Coxeter group, we define rigid reflections and rigid roots using non-self-intersecting curves on a Riemann surface with labeled curves. When the Coxeter group arises from an acyclic quiver, they are related to the rigid representations of the quiver. For a family of rank 3 Coxeter groups, we show that there is a surjective map from the set of reduced positive roots of a rank 2 Kac-Moody algebra onto the set of rigid reflections. We conjecture that this map is bijective.