Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, w...Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.展开更多
The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable ...The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.展开更多
The effect of initial longitudinal velocity of the tunnelled electron on the non-sequential double ionization (NSDI) process in an elliptically polarized laser field is studied by a semiclassical model. We find that...The effect of initial longitudinal velocity of the tunnelled electron on the non-sequential double ionization (NSDI) process in an elliptically polarized laser field is studied by a semiclassical model. We find that the non-zero initial longitudinal velocity has a suppressing effect on single-return collision (SRC) events in the double ionization process, more specifically, it results in an obvious reduction in the center part of the correlation momentum distributions in the direction of the major polarization axis (z axis) and makes the distribution of single-return collision in the minor polarization axis (x axis) become narrower.展开更多
By using a two-dimensional Monte-Carlo classical ensemble method, we investigate the double ionization(DI) process of the CS_2 molecule with different bond lengths in an 800-nm intense laser field. The double ioniza...By using a two-dimensional Monte-Carlo classical ensemble method, we investigate the double ionization(DI) process of the CS_2 molecule with different bond lengths in an 800-nm intense laser field. The double ionization probability presents a "knee" structure with equilibrium internuclear distance R = 2.9245 a.u.(a.u. is short for atomic unit). As the bond length of CS increases, the DI probability is enhanced and the "knee" structure becomes less obvious. In addition,the momentum distribution of double ionized electrons is also investigated, which shows the momentum mostly distributed in the first and third quadrants with equilibrium internuclear distance R = 2.9245 a.u. As the bond length of CS increases,the electron momentum becomes evenly distributed in the four quadrants. Furthermore, the energy distributions and the corresponding trajectories of the double-ionized electrons versus time are also demonstrated, which show that the bond length of CS in the CS_2 molecule plays a key role in the DI process.展开更多
By using classical ensemble method,we investigate the double ionization of C_(3)H_(6) molecule with different structures(propene and cyclopropane)in intense laser fields.The numerical results show that the non-sequent...By using classical ensemble method,we investigate the double ionization of C_(3)H_(6) molecule with different structures(propene and cyclopropane)in intense laser fields.The numerical results show that the non-sequential double ionization occurs in propene molecule rather than cyclopropane molecule in 1200 nm laser field.To further explain this interesting phenomenon,the momentum distribution of double ionized electrons is presented and the result presents the"finger-like"structure at about 30 TW/cm^(2) of propene molecule,and this structure is more obvious than that in cyclopropane molecule.The above phenomena are also demonstrated by analysing the energy distributions of double-ionized electrons versus time.Moreover,we also investigated the angular distribution at the end of pulse,which is different between propene and cyclopropane.展开更多
基金partly supported by the National Natural Science Foundation of China (Grant Nos. 12034008,12250003, and 11727810)the Program of Introducing Talents of Discipline to Universities 111 Project (B12024)。
文摘Electron dynamics during non-sequential double ionization(NSDI) is one of the most attractive areas of research in the field of laser–atom or laser–molecule interaction. Based on the classic two-dimensional model, we study the process of NSDI of argon atoms driven by a few-cycle orthogonal two-color laser field composed of 800 nm and 400 nm laser pulses. By changing the relative phase of the two laser pulses, a localized enhancement of NSDI yield is observed at 0.5πand 1.5π, which could be attributed to a rapid and substantial increase in the number of electrons returning to the parent ion within extremely short time intervals at these specific phases. Through the analysis of the electron–electron momentum correlations within different time windows of NSDI events and the angular distributions of emitted electrons in different channels, we observe a more pronounced electron–electron correlation phenomenon in the recollision-induced ionization(RII) channel. This is attributed to the shorter delay time in the RII channel.
基金the National Key Research and Development Program of China (Grant No.2019YFA0307700)the National Natural Science Foundation of China (Grant Nos.12074145 and 11975012)+1 种基金Jilin Provincial Research Foundation for Basic Research,China (Grant No.20220101003JC)Jilin Provincial Education Department (Grant No.JJKH20230284KJ)。
文摘The double ionization process of molecules driven by co-rotating two-color circularly polarized fields is investigated with a three-dimensional classical ensemble model. Numerical results indicate that a considerable part of the sequential double ionization(DI) events of molecules occur through internal collision double ionization(ICD), and the ICD recollision mechanism is significantly different from that in non-sequential double ionization(NSDI). By analyzing the results of internuclear distances R = 5 a.u. and 2 a.u., these two recollision mechanisms are studied in depth. It is found that the dynamic behaviors of the recollision mechanisms of NSDI and ICD are similar. For NSDI, the motion range of electrons after the ionization is relatively large, and the electrons will return to the core after a period of time. In the ICD process,electrons will rotate around the parent ion before ionization, and the distance of the electron motion is relatively small. After a period of time, the electrons will come back to the core and collide with another electron. Furthermore, the molecular internuclear distance has a significant effect on the electron dynamic behavior of the two ionization mechanisms. This study will help to understand the multi-electron ionization process of complex systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074026 and 11074155)the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-08-0883)
文摘The effect of initial longitudinal velocity of the tunnelled electron on the non-sequential double ionization (NSDI) process in an elliptically polarized laser field is studied by a semiclassical model. We find that the non-zero initial longitudinal velocity has a suppressing effect on single-return collision (SRC) events in the double ionization process, more specifically, it results in an obvious reduction in the center part of the correlation momentum distributions in the direction of the major polarization axis (z axis) and makes the distribution of single-return collision in the minor polarization axis (x axis) become narrower.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574117 and11604131)
文摘By using a two-dimensional Monte-Carlo classical ensemble method, we investigate the double ionization(DI) process of the CS_2 molecule with different bond lengths in an 800-nm intense laser field. The double ionization probability presents a "knee" structure with equilibrium internuclear distance R = 2.9245 a.u.(a.u. is short for atomic unit). As the bond length of CS increases, the DI probability is enhanced and the "knee" structure becomes less obvious. In addition,the momentum distribution of double ionized electrons is also investigated, which shows the momentum mostly distributed in the first and third quadrants with equilibrium internuclear distance R = 2.9245 a.u. As the bond length of CS increases,the electron momentum becomes evenly distributed in the four quadrants. Furthermore, the energy distributions and the corresponding trajectories of the double-ionized electrons versus time are also demonstrated, which show that the bond length of CS in the CS_2 molecule plays a key role in the DI process.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574117,61575077,and 11271158)
文摘By using classical ensemble method,we investigate the double ionization of C_(3)H_(6) molecule with different structures(propene and cyclopropane)in intense laser fields.The numerical results show that the non-sequential double ionization occurs in propene molecule rather than cyclopropane molecule in 1200 nm laser field.To further explain this interesting phenomenon,the momentum distribution of double ionized electrons is presented and the result presents the"finger-like"structure at about 30 TW/cm^(2) of propene molecule,and this structure is more obvious than that in cyclopropane molecule.The above phenomena are also demonstrated by analysing the energy distributions of double-ionized electrons versus time.Moreover,we also investigated the angular distribution at the end of pulse,which is different between propene and cyclopropane.