We propose new hybrid Lagrange neural networks called LaNets to predict the numerical solutions of partial differential equations.That is,we embed Lagrange interpolation and small sample learning into deep neural netw...We propose new hybrid Lagrange neural networks called LaNets to predict the numerical solutions of partial differential equations.That is,we embed Lagrange interpolation and small sample learning into deep neural network frameworks.Concretely,we first perform Lagrange interpolation in front of the deep feedforward neural network.The Lagrange basis function has a neat structure and a strong expression ability,which is suitable to be a preprocessing tool for pre-fitting and feature extraction.Second,we introduce small sample learning into training,which is beneficial to guide themodel to be corrected quickly.Taking advantages of the theoretical support of traditional numerical method and the efficient allocation of modern machine learning,LaNets achieve higher predictive accuracy compared to the state-of-the-artwork.The stability and accuracy of the proposed algorithmare demonstrated through a series of classical numerical examples,including one-dimensional Burgers equation,onedimensional carburizing diffusion equations,two-dimensional Helmholtz equation and two-dimensional Burgers equation.Experimental results validate the robustness,effectiveness and flexibility of the proposed algorithm.展开更多
In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality o...In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.展开更多
This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, ba...This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.展开更多
In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well a...In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well as the nonconservative system with dynamic constraint are established within fractional difference operators of Riemann-Liouville type from the view of time scales. Firstly,time scale calculus and fractional calculus are reviewed.Secondly,with the help of the properties of time scale calculus,discrete Lagrange equation of the nonconservative system within fractional difference operators of Riemann-Liouville type is presented. Thirdly,using the Lagrange multipliers,discrete Lagrange equation of the nonconservative system with dynamic constraint is also established.Then two special cases are discussed. Finally,two examples are devoted to illustrate the results.展开更多
This paper studies conformal invariance and conserved quantity of third-order Lagrange equations for non- conserved mechanical systems. Third-order Lagrange equations, the definition and a determining equation of conf...This paper studies conformal invariance and conserved quantity of third-order Lagrange equations for non- conserved mechanical systems. Third-order Lagrange equations, the definition and a determining equation of conformal invariance of the system are presented. The conformal factor expression is deduced from conformal invariance and Lie symmetry. The necessary and sufficient condition that conformal invaxiance of the system would have Lie symmetry under single-parameter infinitesimal transformations is obtained. The corresponding conserved quantity of conformal invariance is derived with the aid of a structure equation. Lastly, an example is given to illustrate the application of the results.展开更多
This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding diffe...This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding difference scheme. This approach makes it possible to devise techniques for solving the Lagrange Maxwell equations in differences which correspond to mechanico-electrical systems,by adapting existing differential equations.In particular,it obtains a new systematic method to determine both the one-parameter Lie groups and the discrete Noether conserved quantities of Lie point symmetries for mechanico-electrical systems.As an application,it obtains the Lie point symmetries and the conserved quantities for the difference equation of a model that represents a capacitor microphone.展开更多
The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is, firstly, to write the second-order differential equations complet...The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is, firstly, to write the second-order differential equations completely or partially in the form of Lagrange equations, and secondly, to obtain the integrals of the equations by using the Noether theory of the Lagrange system. An example is given to illustrate the application of the result.展开更多
Recently many research works have been conducted and published regarding fractional order differential equations. There are several approaches available for numerical approximations of the solution of fractional order...Recently many research works have been conducted and published regarding fractional order differential equations. There are several approaches available for numerical approximations of the solution of fractional order diffusion equations. Spectral collocation method based on Lagrange’s basis polynomials to approximate numerical solutions of one-dimensional (1D) space fractional diffusion equations are introduced in this research paper. The proposed form of approximate solution satisfies non-zero Dirichlet’s boundary conditions on both boundaries. Collocation scheme produce a system of first order Ordinary Differential Equations (ODE) from the fractional diffusion equation. We applied this method with four different sets of collocation points to compare their performance.展开更多
Two constraint violation stabilization methods are presented to solve the Euler Lagrange equations of motion of a multibody system with nonholonomic constraints. Compared to the previous works, the newly devised metho...Two constraint violation stabilization methods are presented to solve the Euler Lagrange equations of motion of a multibody system with nonholonomic constraints. Compared to the previous works, the newly devised methods can deal with more complicated problems such as those with nonholonomic constraints or redundant constraints, and save the computation time. Finally a numerical simulation of a multibody system is conducted by using the methods given in this paper.展开更多
In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noet...In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.展开更多
Using the method of [1], the present paper derives the Lagrange equation without multipliers for another class of first-order nonholonomic dynamical systems by means of variational principle. This kind of equations is...Using the method of [1], the present paper derives the Lagrange equation without multipliers for another class of first-order nonholonomic dynamical systems by means of variational principle. This kind of equations is also new.展开更多
The quasi-periodic pendulum type equations are considered. A sufficient and necessary condition of Lagrange stability for this kind of equations is obtained. The result obtained answers a problem proposed by Moser und...The quasi-periodic pendulum type equations are considered. A sufficient and necessary condition of Lagrange stability for this kind of equations is obtained. The result obtained answers a problem proposed by Moser under the quasi-periodic case.展开更多
Based on the theory of calculus of variation, some suffcient conditions are given for some Euler-Lagrangcequations to be equivalently represented by finite or even infinite many Hamiltonian canonical equations. Meanwh...Based on the theory of calculus of variation, some suffcient conditions are given for some Euler-Lagrangcequations to be equivalently represented by finite or even infinite many Hamiltonian canonical equations. Meanwhile,some further applications for equations such as the KdV equation, MKdV equation, the general linear Euler Lagrangeequation and the cylindric shell equations are given.展开更多
This paper solves the two dimensional linear Fredholm integral equations of the second kind by combining the meshless barycentric Lagrange interpolation functions and the Gauss-Legendre quadrature formula. Inspired by...This paper solves the two dimensional linear Fredholm integral equations of the second kind by combining the meshless barycentric Lagrange interpolation functions and the Gauss-Legendre quadrature formula. Inspired by this thought, we convert the equations into the associated algebraic equations. The results of the numerical examples are given to illustrate that the approximated method is feasible and efficient.展开更多
Due to the ability to model various complex phenomena where classical calculus failed, fractional calculus is getting enormous attention recently. There are several approaches available for numerical approximations of...Due to the ability to model various complex phenomena where classical calculus failed, fractional calculus is getting enormous attention recently. There are several approaches available for numerical approximations of various types of fractional differential equations. For fractional diffusion equations spectral collocation is one of the efficient and most popular ap-proximation techniques. In this research, we introduce spectral collocation method based on Lagrange’s basis polynomials for numerical approximations of two-dimensional (2D) space fractional diffusion equations where spatial fractional derivative is described in Riemann-Liouville sense. We consider four different types of nodes to generate Lagrange’s basis polynomials and as collocation points in the proposed spectral collocation technique. Spectral collocation method converts the diffusion equation into a system of ordinary differential equations (ODE) for time variable and we use 4th order Runge-Kutta method to solve the resulting system of ODE. Two examples are considered to verify the efficiency of different types of nodes in the proposed method. We compare approximated solution with exact solution and find that Lagrange’s spectral collocation method gives very high accuracy approximation. Among the four types of nodes, nodes from Jacobi polynomial give highest accuracy and nodes from Chebyshev polynomials of 1st kind give lowest accuracy in the proposed method.展开更多
In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is appli...In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is applied to treat the spatial variables and their partial derivatives,and the collocation method for solving the second order differential equations is established.Secondly,the differential matrix is used to simplify the given differential equations on a given test node.Finally,based on three kinds of test nodes,numerical experiments show that the present scheme can not only calculate the high wave numbers problems,but also calculate the variable wave numbers problems.In addition,the algorithm has the advantages of high calculation accuracy,good numerical stability and less time consuming.展开更多
The D'Alembert-Lagrange equation is introduced and used to derive theformulas of momentary efficiency for external gearing of standard involutes spur gears. The gearingswith correct and increased center distance a...The D'Alembert-Lagrange equation is introduced and used to derive theformulas of momentary efficiency for external gearing of standard involutes spur gears. The gearingswith correct and increased center distance are discussed. The momentary efficiency formula iscalculated and analyzed using software Matlab. The derived formula of momentary efficiency is alsocompared with the traditional formula.展开更多
基金supported by NSFC(No.11971296)National Key Research and Development Program of China(No.2021YFA1003004).
文摘We propose new hybrid Lagrange neural networks called LaNets to predict the numerical solutions of partial differential equations.That is,we embed Lagrange interpolation and small sample learning into deep neural network frameworks.Concretely,we first perform Lagrange interpolation in front of the deep feedforward neural network.The Lagrange basis function has a neat structure and a strong expression ability,which is suitable to be a preprocessing tool for pre-fitting and feature extraction.Second,we introduce small sample learning into training,which is beneficial to guide themodel to be corrected quickly.Taking advantages of the theoretical support of traditional numerical method and the efficient allocation of modern machine learning,LaNets achieve higher predictive accuracy compared to the state-of-the-artwork.The stability and accuracy of the proposed algorithmare demonstrated through a series of classical numerical examples,including one-dimensional Burgers equation,onedimensional carburizing diffusion equations,two-dimensional Helmholtz equation and two-dimensional Burgers equation.Experimental results validate the robustness,effectiveness and flexibility of the proposed algorithm.
文摘In this paper, a modified version of the Classical Lagrange Multiplier method is developed for convex quadratic optimization problems. The method, which is evolved from the first order derivative test for optimality of the Lagrangian function with respect to the primary variables of the problem, decomposes the solution process into two independent ones, in which the primary variables are solved for independently, and then the secondary variables, which are the Lagrange multipliers, are solved for, afterward. This is an innovation that leads to solving independently two simpler systems of equations involving the primary variables only, on one hand, and the secondary ones on the other. Solutions obtained for small sized problems (as preliminary test of the method) demonstrate that the new method is generally effective in producing the required solutions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 10672143)
文摘This paper obtains Lagrange equations of nonholonomic systems with fractional derivatives. First, the exchanging relationships between the isochronous variation and the fractional derivatives are derived. Secondly, based on these exchanging relationships, the Hamilton's principle is presented for non-conservative systems with fractional derivatives. Thirdly, Lagrange equations of the systems are obtained. Furthermore, the d'Alembert-Lagrange principle with fractional derivatives is presented, and the Lagrange equations of nonholonomic systems with fractional derivatives are studied. An example is designed to illustrate these results.
基金supported by the National Natural Science Foundation of China(Nos.11802193, 11572212,11272227)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (18KJB130005)+1 种基金the Science Research Foundation of Suzhou University of Science and Technology(331812137)Natural Science Foundation of Suzhou University of Science and Technology
文摘In order to study discrete nonconservative system,Hamilton's principle within fractional difference operators of Riemann-Liouville type is given. Discrete Lagrange equations of the nonconservative system as well as the nonconservative system with dynamic constraint are established within fractional difference operators of Riemann-Liouville type from the view of time scales. Firstly,time scale calculus and fractional calculus are reviewed.Secondly,with the help of the properties of time scale calculus,discrete Lagrange equation of the nonconservative system within fractional difference operators of Riemann-Liouville type is presented. Thirdly,using the Lagrange multipliers,discrete Lagrange equation of the nonconservative system with dynamic constraint is also established.Then two special cases are discussed. Finally,two examples are devoted to illustrate the results.
基金Project supported by the Graduate Students Innovative Foundation of China University of Petroleum (East China) (Grant NoS2009-19)
文摘This paper studies conformal invariance and conserved quantity of third-order Lagrange equations for non- conserved mechanical systems. Third-order Lagrange equations, the definition and a determining equation of conformal invariance of the system are presented. The conformal factor expression is deduced from conformal invariance and Lie symmetry. The necessary and sufficient condition that conformal invaxiance of the system would have Lie symmetry under single-parameter infinitesimal transformations is obtained. The corresponding conserved quantity of conformal invariance is derived with the aid of a structure equation. Lastly, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10672143 and 60575055)State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences+1 种基金Tang Yi-Fa acknowledges the support under Sabbatical Program (SAB2006-0070) of the Spanish Ministry of Education and ScienceJimnez S and Vzquez L acknowledge support of the Spanish Ministry of Education and Science (Grant No MTM2005-05573)
文摘This paper presents a method to find Noether-type conserved quantities and Lie point symmetries for discrete mechanico-electrical dynamical systems,which leave invuriant the set of solutions of the corresponding difference scheme. This approach makes it possible to devise techniques for solving the Lagrange Maxwell equations in differences which correspond to mechanico-electrical systems,by adapting existing differential equations.In particular,it obtains a new systematic method to determine both the one-parameter Lie groups and the discrete Noether conserved quantities of Lie point symmetries for mechanico-electrical systems.As an application,it obtains the Lie point symmetries and the conserved quantities for the difference equation of a model that represents a capacitor microphone.
基金supported by the National Natural Science Foundation of China (Grant Nos 10272021 and 10572021)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022)the Fund for Fundamental Research of BIT (Grant No 20070742005)
文摘The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is, firstly, to write the second-order differential equations completely or partially in the form of Lagrange equations, and secondly, to obtain the integrals of the equations by using the Noether theory of the Lagrange system. An example is given to illustrate the application of the result.
文摘Recently many research works have been conducted and published regarding fractional order differential equations. There are several approaches available for numerical approximations of the solution of fractional order diffusion equations. Spectral collocation method based on Lagrange’s basis polynomials to approximate numerical solutions of one-dimensional (1D) space fractional diffusion equations are introduced in this research paper. The proposed form of approximate solution satisfies non-zero Dirichlet’s boundary conditions on both boundaries. Collocation scheme produce a system of first order Ordinary Differential Equations (ODE) from the fractional diffusion equation. We applied this method with four different sets of collocation points to compare their performance.
基金Project supported by the National Natural Science Foundation of China (No. 19902006).
文摘Two constraint violation stabilization methods are presented to solve the Euler Lagrange equations of motion of a multibody system with nonholonomic constraints. Compared to the previous works, the newly devised methods can deal with more complicated problems such as those with nonholonomic constraints or redundant constraints, and save the computation time. Finally a numerical simulation of a multibody system is conducted by using the methods given in this paper.
基金National Natural Science Foundation of China under Grant No.10272034the Doctoral Program Foundation of China
文摘In this paper,the form invariance and the Lie symmetry of Lagrange's equations for nonconservativesystem in generalized classical mechanics under the infinitesimal transformations of group are studied,and the Noether'sconserved quantity,the new form conserved quantity,and the Hojman's conserved quantity of system are derived fromthem.Finally,an example is given to illustrate the application of the result.
文摘Using the method of [1], the present paper derives the Lagrange equation without multipliers for another class of first-order nonholonomic dynamical systems by means of variational principle. This kind of equations is also new.
基金Partially supported by the NSF (10871203, 10601019) of Chinathe NCET (07-0386)of China
文摘The quasi-periodic pendulum type equations are considered. A sufficient and necessary condition of Lagrange stability for this kind of equations is obtained. The result obtained answers a problem proposed by Moser under the quasi-periodic case.
文摘Based on the theory of calculus of variation, some suffcient conditions are given for some Euler-Lagrangcequations to be equivalently represented by finite or even infinite many Hamiltonian canonical equations. Meanwhile,some further applications for equations such as the KdV equation, MKdV equation, the general linear Euler Lagrangeequation and the cylindric shell equations are given.
文摘This paper solves the two dimensional linear Fredholm integral equations of the second kind by combining the meshless barycentric Lagrange interpolation functions and the Gauss-Legendre quadrature formula. Inspired by this thought, we convert the equations into the associated algebraic equations. The results of the numerical examples are given to illustrate that the approximated method is feasible and efficient.
文摘Due to the ability to model various complex phenomena where classical calculus failed, fractional calculus is getting enormous attention recently. There are several approaches available for numerical approximations of various types of fractional differential equations. For fractional diffusion equations spectral collocation is one of the efficient and most popular ap-proximation techniques. In this research, we introduce spectral collocation method based on Lagrange’s basis polynomials for numerical approximations of two-dimensional (2D) space fractional diffusion equations where spatial fractional derivative is described in Riemann-Liouville sense. We consider four different types of nodes to generate Lagrange’s basis polynomials and as collocation points in the proposed spectral collocation technique. Spectral collocation method converts the diffusion equation into a system of ordinary differential equations (ODE) for time variable and we use 4th order Runge-Kutta method to solve the resulting system of ODE. Two examples are considered to verify the efficiency of different types of nodes in the proposed method. We compare approximated solution with exact solution and find that Lagrange’s spectral collocation method gives very high accuracy approximation. Among the four types of nodes, nodes from Jacobi polynomial give highest accuracy and nodes from Chebyshev polynomials of 1st kind give lowest accuracy in the proposed method.
基金partially supported by National Natural Science Foundation of China(11772165,11961054,11902170)Key Research and Development Program of Ningxia(2018BEE03007)+1 种基金National Natural Science Foundation of Ningxia(2018AAC02003,2020AAC03059)Major Innovation Projects for Building First-class Universities in China’s Western Region(Grant No.ZKZD2017009).
文摘In this paper,Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation.First of all,the interpolation basis function is applied to treat the spatial variables and their partial derivatives,and the collocation method for solving the second order differential equations is established.Secondly,the differential matrix is used to simplify the given differential equations on a given test node.Finally,based on three kinds of test nodes,numerical experiments show that the present scheme can not only calculate the high wave numbers problems,but also calculate the variable wave numbers problems.In addition,the algorithm has the advantages of high calculation accuracy,good numerical stability and less time consuming.
文摘The D'Alembert-Lagrange equation is introduced and used to derive theformulas of momentary efficiency for external gearing of standard involutes spur gears. The gearingswith correct and increased center distance are discussed. The momentary efficiency formula iscalculated and analyzed using software Matlab. The derived formula of momentary efficiency is alsocompared with the traditional formula.