The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system,...The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of the groups, from the d...A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of the groups, from the definition and the criterion of Mei symmetry, a type of structural equation and conserved quantity for the system by proposition 2 are obtained, and the inferences in two special cases are given. Finally, an example is given to illustrate the application of the results.展开更多
A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints is investigated. Nielsen equations and differential equations of motion for the holono...A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints is investigated. Nielsen equations and differential equations of motion for the holonomic mechanical system with unilateral constraints are established. The definition and the criterion of Mei symmetry for Nielsen equations in the holonomic systems with unilateral constraints under the infinitesimal transformations of Lie group are also given. The expressions of the structural equation and a type of new conserved quantity of Mei symmetry for Nielsen equations in the holonomic system with unilateral constraints are obtained. An example is given to illustrate the application of the results.展开更多
The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Ni...The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.展开更多
Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a...Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic, non-conservative system of Chetaev's type with variable mass are studied. The differential equations of motion of the Nielsen equation...Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic, non-conservative system of Chetaev's type with variable mass are studied. The differential equations of motion of the Nielsen equation for the system, the definition and criterion of Mei symmetry, and the condition and the form of Mei conserved quantity deduced directly by Mei symmetry for the system are obtained. An example is given to illustrate the application of the results.展开更多
In this paper,with Poincare's formalism,and an indirect method,the canonical forms of the generalized equations of motion due to Nielsen and Cenov of a holonomic dynamical system in the velocity-phase space and th...In this paper,with Poincare's formalism,and an indirect method,the canonical forms of the generalized equations of motion due to Nielsen and Cenov of a holonomic dynamical system in the velocity-phase space and the acenleration-phase space are obtained in terms of the Poincare parameters.展开更多
基金supported by the National Natural Science Foundation of China(Grant No 10572021)the Preparatory Research Foundation of Jiangnan University,China(Grant No 2008LYY011)
文摘The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of the groups, from the definition and the criterion of Mei symmetry, a type of structural equation and conserved quantity for the system by proposition 2 are obtained, and the inferences in two special cases are given. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11142014 and 61178032)the Scientific Research and Innovation Plan for College Graduates of Jiangsu Province of China(Grant No.CSLX12_0720)
文摘A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints is investigated. Nielsen equations and differential equations of motion for the holonomic mechanical system with unilateral constraints are established. The definition and the criterion of Mei symmetry for Nielsen equations in the holonomic systems with unilateral constraints under the infinitesimal transformations of Lie group are also given. The expressions of the structural equation and a type of new conserved quantity of Mei symmetry for Nielsen equations in the holonomic system with unilateral constraints are obtained. An example is given to illustrate the application of the results.
文摘The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China under Grant No.10572021the Preparatory Research Foundation of Jiangnan University under Grant No.2008LYY011
文摘Noether symmetry of Nielsen equation and Noether conserved quantity deduced directly from Noether symmetry for dynamical systems of the relative motion are studied. The definition and criteria of Noether symmetry of a Nielsen equation under the infinitesimal transformations of groups are given. Expression of Noether conserved quantity deduced directly from Noether symmetry of Nielsen equation for the system are obtained. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572021)the Preparatory Research Foundation of Jiangnan University,China (Grant No. 2008LYY011)
文摘Mei symmetry and Mei conserved quantity of Nielsen equations for a non-holonomic, non-conservative system of Chetaev's type with variable mass are studied. The differential equations of motion of the Nielsen equation for the system, the definition and criterion of Mei symmetry, and the condition and the form of Mei conserved quantity deduced directly by Mei symmetry for the system are obtained. An example is given to illustrate the application of the results.
基金This paper was presented at the International Congress of Mathematicians(ICM),21—29 August,1990,Kyoto University,Japan.
文摘In this paper,with Poincare's formalism,and an indirect method,the canonical forms of the generalized equations of motion due to Nielsen and Cenov of a holonomic dynamical system in the velocity-phase space and the acenleration-phase space are obtained in terms of the Poincare parameters.