In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solutio...In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solution by the Banach contraction mapping principle. Then, by “Concavity” method we establish three blow-up results for certain solutions in the case 1): , in the case 2): and in the case 3): . At last, we consider that the estimation of the upper bounds of the blow-up time is given for deferent initial energy.展开更多
This paper studies the initial boundary value problem for a generalized Boussinese equation and proves the existence and uniqueness of the local generalized solution of the problem by using the Galerkin method. Moreov...This paper studies the initial boundary value problem for a generalized Boussinese equation and proves the existence and uniqueness of the local generalized solution of the problem by using the Galerkin method. Moreover, it gives the sufficient conditions of blow-up of the solution in finite time by using the concavity method.展开更多
文摘In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: . At first, we prove the existence and uniqueness of the local solution by the Banach contraction mapping principle. Then, by “Concavity” method we establish three blow-up results for certain solutions in the case 1): , in the case 2): and in the case 3): . At last, we consider that the estimation of the upper bounds of the blow-up time is given for deferent initial energy.
基金Project supported by the National Natural Science Foundation of China (No.10671182)the Excellent Youth Teachers Foundation of High College of Henan Province of China
文摘This paper studies the initial boundary value problem for a generalized Boussinese equation and proves the existence and uniqueness of the local generalized solution of the problem by using the Galerkin method. Moreover, it gives the sufficient conditions of blow-up of the solution in finite time by using the concavity method.