This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior mag...This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.展开更多
The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf O...The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities.展开更多
Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is ...Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances.展开更多
针对航空发动机这个具有时变不确定性的非线性系统,提出了一种新型变结构全局快速最终滑动模态控制(Variable Structure Global Fast Terminal Sliding Mode Control)的航空发动机控制方法;通过对利用VSGFTSMC理论设计航空发动机最终滑...针对航空发动机这个具有时变不确定性的非线性系统,提出了一种新型变结构全局快速最终滑动模态控制(Variable Structure Global Fast Terminal Sliding Mode Control)的航空发动机控制方法;通过对利用VSGFTSMC理论设计航空发动机最终滑动模态控制器的方法进行了深入研究,设计了航空发动机变结构全局快速滑动模态控制器;仿真结果表明,所设计的控制器的控制效果良好,对外界干扰有很强的抑制能力,使被控系统在整个控制阶段都具有较强的鲁棒性。展开更多
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators...In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.展开更多
An improved nonsingular fast terminal sliding mode manifold based on scaled state error is proposed in this paper.It can significantly accelerate the convergence rate of the state error which is initially far from the...An improved nonsingular fast terminal sliding mode manifold based on scaled state error is proposed in this paper.It can significantly accelerate the convergence rate of the state error which is initially far from the origin and achieve the fixed-time convergence.In addition,conventional double power term based reaching law is improved to ensure the convergence of sliding state in the presence of disturbances.The proposed approach is applied to the hovering control of an unmanned underwater vehicle.The controller exhibits both fast convergence and strong robustness to model uncertainty and external disturbances.展开更多
Focusing on the non-concave trajectory constraint,a sliding-mode-based nonsingular feedback fast fixed-time three-dimensional terminal guidance of rotor unmanned aerial vehicle landing,planetary landing and spacecraft...Focusing on the non-concave trajectory constraint,a sliding-mode-based nonsingular feedback fast fixed-time three-dimensional terminal guidance of rotor unmanned aerial vehicle landing,planetary landing and spacecraft rendezvous and docking terminal phase with external disturbance is investigated in this paper.Firstly,a fixed-time observer based on real-time differentiator is developed to compensate for the external disturbance,whose estimation error can converge to zero after a time independent of the initial state.Then,a sliding surface ensuring fixed-time convergence is presented.This sliding surface can guarantee that the vehicle achieves a non-concave trajectory,which is better for avoiding collision and maintaining the visibility of the landing site or docking port.Next,the nonsingular guidance ensuring the fixed-time convergence of the sliding surface is proposed,which is continuous and chatter free.At last,three numerical simulations of Mars landing are performed to validate the effectiveness and correctness of the designed scheme.展开更多
In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopt...In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopted as the control framework to ensure the global asymptotic stability of the closed-loop system.Next,the NTSM with estimated parameters of actuator faults is used as main robustness controller to deal with actuator faults.Then,the ESO is utilized to estimate and compensate the complex coupling effects and external disturbances.The Lyapunov stability theory can guarantee the asymptotic stability of aerial manipulators system with actuator faults and external disturbances.The proposed FTC scheme considers both actuator fault and modelling errors,combined with the adaptive law of actuator fault,which has better performance than traditional FTC scheme,such as NTSM.Finally,several comparative simulations are conducted to illustrate the effectiveness of the proposed FTC scheme.展开更多
We studied carrier landing robust control based on longitudinal decoupling.Firstly,due to the relative strong coupling between the tangential and the normal directions,the height and the velocity channels were decoupl...We studied carrier landing robust control based on longitudinal decoupling.Firstly,due to the relative strong coupling between the tangential and the normal directions,the height and the velocity channels were decoupled by using the exact linearization method,so that controllers for the two channels could be designed seperately.In the height control,recursive dynamic surface was used to accelerate the convergence of the height control and eliminate″the explosion of complexity″.The radial basis function(RBF)neural network was designed by using the minimum learning parameter method to compensate the uncertainty.A kind of surface with nonsingular fast terminal sliding mode and its reaching law were developed to ensure finite time convergence and to avoid singularity.The controller for the velocity was designed by using super-twisting second-order sliding mode control.The stability of the proposed system was validated by Lyapunov method.The results showed that the Levant′s robust differential observer was improved and used for the observation of the required higher order differential of signals in the controller.The response of aircraft carrier landing under the complex disturbance is simulated and the results verified the approach.展开更多
A bio-inspired global finite time control using global fast-terminal sliding mode controller and radial basis function network is presented in this article,to address the attitude tracking control problem of the three...A bio-inspired global finite time control using global fast-terminal sliding mode controller and radial basis function network is presented in this article,to address the attitude tracking control problem of the three degree-of-freedom four-rotor hover system.The proposed controller provides convergence of system states in a predetermined finite time and estimates the unmodeled dynamics of the four-rotor system.Dynamic model of the four-rotor system is derived with Newton’s force equations.The unknown dynamics of four-rotor systems are estimated using Radial basis function.The bio-inspired global fast terminal sliding mode controller is proposed to provide chattering free finite time error convergence and to provide optimal tracking of the attitude angles while being subjected to unknown dynamics.The global stability proof of the designed controller is provided on the basis of Lyapunov stability theorem.The proposed controller is validated by(i)conducting an experiment through implementing it on the laboratory-based hover system,and(ii)through simulations.Performance of the proposed control scheme is also compared with classical and intelligent controllers.The performance comparison exhibits that the designed controller has quick transient response and improved chattering free steady state performance.The proposed bioinspired global fast terminal sliding mode controller offers improved estimation and better tracking performance than the traditional controllers.In addition,the proposed controller is computationally cost effective and can be implanted on multirotor unmanned air vehicles with limited computational processing capabilities.展开更多
基金supported by the Natural Science Foundation of China under Grant No.61733004the Scientific Research Fund of the Hunan Provincial Education Department under Grand No.18A267.
文摘This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation.
文摘The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities.
基金the National Natural Science Foundation of China(No.52175100)the Natural Science Foundation of Jiangsu Province(No.BK20201379)+2 种基金the 2020 Industrial Transformation and Upgrading Project of Industry and Information Technology Department of Jiangsu Province(No.JITC-2000AX0676-71)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(No.NY221076)the Scientific and Technological Achievements Transformation Project of Jiangsu Province(No.BA2020004)。
文摘Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances.
基金supported by the National Natural Science Foundation of China(No.11372210 and No.51405343)the Research Fund for the Doctoral Program of Higher Education of China(No.20120032110010)Tianjin Research Program of Application Foundation and Advanced Technology(No.12JCZDJC28000 and No.15JCQNJC05000)
文摘针对航空发动机这个具有时变不确定性的非线性系统,提出了一种新型变结构全局快速最终滑动模态控制(Variable Structure Global Fast Terminal Sliding Mode Control)的航空发动机控制方法;通过对利用VSGFTSMC理论设计航空发动机最终滑动模态控制器的方法进行了深入研究,设计了航空发动机变结构全局快速滑动模态控制器;仿真结果表明,所设计的控制器的控制效果良好,对外界干扰有很强的抑制能力,使被控系统在整个控制阶段都具有较强的鲁棒性。
基金the Vietnam National Foundation for Science and Technology Development(NAFOSTED)Vietnam under Grant No.(107.01-2019.311).
文摘In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method.
文摘An improved nonsingular fast terminal sliding mode manifold based on scaled state error is proposed in this paper.It can significantly accelerate the convergence rate of the state error which is initially far from the origin and achieve the fixed-time convergence.In addition,conventional double power term based reaching law is improved to ensure the convergence of sliding state in the presence of disturbances.The proposed approach is applied to the hovering control of an unmanned underwater vehicle.The controller exhibits both fast convergence and strong robustness to model uncertainty and external disturbances.
基金co-supported by the National Defense Basic Scientific Research Project,China(No.JCKY2020903B002)the National Natural Science Foundation of China(Nos.61973100,62273118 and 12150008)。
文摘Focusing on the non-concave trajectory constraint,a sliding-mode-based nonsingular feedback fast fixed-time three-dimensional terminal guidance of rotor unmanned aerial vehicle landing,planetary landing and spacecraft rendezvous and docking terminal phase with external disturbance is investigated in this paper.Firstly,a fixed-time observer based on real-time differentiator is developed to compensate for the external disturbance,whose estimation error can converge to zero after a time independent of the initial state.Then,a sliding surface ensuring fixed-time convergence is presented.This sliding surface can guarantee that the vehicle achieves a non-concave trajectory,which is better for avoiding collision and maintaining the visibility of the landing site or docking port.Next,the nonsingular guidance ensuring the fixed-time convergence of the sliding surface is proposed,which is continuous and chatter free.At last,three numerical simulations of Mars landing are performed to validate the effectiveness and correctness of the designed scheme.
基金Project(51705243)supported by National Natural Science Foundation of ChinaProject(NS2020052)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(GZKF-201915)supported by the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems,China。
文摘In this paper,an active fault-tolerant control(FTC)strategy of aerial manipulators based on non-singular terminal sliding mode(NTSM)and extended state observer(ESO)is proposed.Firstly,back-stepping technology is adopted as the control framework to ensure the global asymptotic stability of the closed-loop system.Next,the NTSM with estimated parameters of actuator faults is used as main robustness controller to deal with actuator faults.Then,the ESO is utilized to estimate and compensate the complex coupling effects and external disturbances.The Lyapunov stability theory can guarantee the asymptotic stability of aerial manipulators system with actuator faults and external disturbances.The proposed FTC scheme considers both actuator fault and modelling errors,combined with the adaptive law of actuator fault,which has better performance than traditional FTC scheme,such as NTSM.Finally,several comparative simulations are conducted to illustrate the effectiveness of the proposed FTC scheme.
基金supported in part by the National Natural Science Foundation of China(No.51505491)
文摘We studied carrier landing robust control based on longitudinal decoupling.Firstly,due to the relative strong coupling between the tangential and the normal directions,the height and the velocity channels were decoupled by using the exact linearization method,so that controllers for the two channels could be designed seperately.In the height control,recursive dynamic surface was used to accelerate the convergence of the height control and eliminate″the explosion of complexity″.The radial basis function(RBF)neural network was designed by using the minimum learning parameter method to compensate the uncertainty.A kind of surface with nonsingular fast terminal sliding mode and its reaching law were developed to ensure finite time convergence and to avoid singularity.The controller for the velocity was designed by using super-twisting second-order sliding mode control.The stability of the proposed system was validated by Lyapunov method.The results showed that the Levant′s robust differential observer was improved and used for the observation of the required higher order differential of signals in the controller.The response of aircraft carrier landing under the complex disturbance is simulated and the results verified the approach.
文摘A bio-inspired global finite time control using global fast-terminal sliding mode controller and radial basis function network is presented in this article,to address the attitude tracking control problem of the three degree-of-freedom four-rotor hover system.The proposed controller provides convergence of system states in a predetermined finite time and estimates the unmodeled dynamics of the four-rotor system.Dynamic model of the four-rotor system is derived with Newton’s force equations.The unknown dynamics of four-rotor systems are estimated using Radial basis function.The bio-inspired global fast terminal sliding mode controller is proposed to provide chattering free finite time error convergence and to provide optimal tracking of the attitude angles while being subjected to unknown dynamics.The global stability proof of the designed controller is provided on the basis of Lyapunov stability theorem.The proposed controller is validated by(i)conducting an experiment through implementing it on the laboratory-based hover system,and(ii)through simulations.Performance of the proposed control scheme is also compared with classical and intelligent controllers.The performance comparison exhibits that the designed controller has quick transient response and improved chattering free steady state performance.The proposed bioinspired global fast terminal sliding mode controller offers improved estimation and better tracking performance than the traditional controllers.In addition,the proposed controller is computationally cost effective and can be implanted on multirotor unmanned air vehicles with limited computational processing capabilities.