期刊文献+
共找到382篇文章
< 1 2 20 >
每页显示 20 50 100
Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
1
作者 Alireza Khanzadeh Mahdi Pourgholi 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期86-93,共8页
In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a slidin... In the conventional chaos synchronization methods, the time at which two chaotic systems are synchronized, is usually unknown and depends on initial conditions. In this work based on Lyapunov stability theory a sliding mode controller with time-varying switching surfaces is proposed to achieve chaos synchronization at a pre-specified time for the first time. The proposed controller is able to synchronize chaotic systems precisely at any time when we want. Moreover, by choosing the time-varying switching surfaces in a way that the reaching phase is eliminated, the synchronization becomes robust to uncertainties and exogenous disturbances. Simulation results are presented to show the effectiveness of the proposed method of stabilizing and synchronizing chaotic systems with complete robustness to uncertainty and disturbances exactly at a pre-specified time. 展开更多
关键词 chaos synchronization finite time synchronization sliding mode controller time varying switching surfaces
下载PDF
Disturbance Observer Based Sliding Mode Controller Design for Heave Motion of Surface Effect Ships
2
作者 许大禹 孙玉清 +1 位作者 杜佳璐 胡鑫 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期759-763,共5页
In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying dist... In order to damp the heave motion of surface effect ships(SESs),a sliding mode controller with a disturbance observer was designed.At first,a disturbance observer was proposed to estimate the unknown time-varying disturbance acting on SESs due to waves.Then,based on the disturbance,a slide mode controller was designed to minimize the magnitude of SES's heave motion position.It was theoretically proved that the designed sliding mode controller with the disturbance observer could guarantee the stability of the closed-loop heave motion control system of SESs.Simulations on a Norwegian Navy's SES were carried out and the simulation results illustrated the effectiveness of the proposed controller with the disturbance observer. 展开更多
关键词 disturbance observer sliding guarantee Observer illustrated slide backstepping globally ultimately
下载PDF
A Novel Disturbance Observer Based Fixed-Time Sliding Mode Control for Robotic Manipulators With Global Fast Convergence
3
作者 Dan Zhang Jiabin Hu +2 位作者 Jun Cheng Zheng-Guang Wu Huaicheng Yan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期661-672,共12页
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th... This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance. 展开更多
关键词 Disturbance observer(DO) fixed-time non-singular sliding mode control robotic manipulator trajectory tracking
下载PDF
The Non-Singular Fast Terminal Sliding Mode Control of Interior Permanent Magnet Synchronous Motor Based on Deep Flux Weakening Switching Point Tracking
4
作者 Xiangfei Li Yang Yin +2 位作者 Yang Zhou Wenchang Liu Kaihui Zhao 《Energy Engineering》 EI 2023年第2期277-297,共21页
This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior mag... This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation. 展开更多
关键词 Interior permanentmagnet synchronousmotor(IPMSM) flux weakening(FW)control non-singular fast terminal sliding mode control(NFTSMC) extended sliding mode disturbance observer(ESMDO)
下载PDF
Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:10
5
作者 廖煜雷 张铭钧 +1 位作者 万磊 李晔 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期370-378,共9页
The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturban... The trajectory tracking control problem for underactuated unmanned surface vehicles(USV) was addressed, and the control system took account of the uncertain influences induced by model perturbation, external disturbance, etc. By introducing the reference, trajectory was generated by a virtual USV, and the error equation of trajectory tracking for USV was obtained, which transformed the tracking problem of underactuated USV into the stabilization problem of the trajectory tracking error equation. A backstepping adaptive sliding mode controller was proposed based on backstepping technology and method of dynamic slide model control. By means of theoretical analysis, it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 trajectory tracking UNDERACTUATED unmanned surface vehicle (USV) BACKSTEPPING dynamic sliding mode control
下载PDF
Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system 被引量:9
6
作者 Jiang-Bin Wang Chong-Xin Liu +1 位作者 Yan Wang Guang-Chao Zheng 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期234-241,共8页
Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed ... Chattering phenomenon and singularity are still the main problems that hinder the practical application of sliding mode control. In this paper, a fixed time integral sliding mode controller is designed based on fixed time stability theory, which ensures precise convergence of the state variables of controlled system, and overcomes the drawback of convergence time growing unboundedly as the initial value increases in finite time controller. It makes the controlled system converge to the control objective within a fixed time bounded by a constant as the initial value grows, and convergence time can be changed by adjusting parameters of controllers properly. Compared with other fixed time controllers, the fixed time integral sliding mode controller proposed in this paper achieves chattering-free control, and integral expression is used to avoid singularity generated by derivation. Finally, the controller is used to stabilize four-order chaotic power system. The results demonstrate that the controller realizes the non-singular chattering-free control of chaotic oscillation in the power system and guarantees the fixed time convergence of state variables, which shows its higher superiority than other finite time controllers. 展开更多
关键词 fixed time stability integral sliding mode control four-order power system chaotic oscillation non-singular chattering-free
下载PDF
Integrated guidance and control of guided projectile with multiple constraints based on fuzzy adaptive and dynamic surface 被引量:6
7
作者 Shang Jiang Fu-qing Tian +1 位作者 Shi-yan Sun Wei-ge Liang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1130-1141,共12页
Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic character... Based on fuzzy adaptive and dynamic surface(FADS),an integrated guidance and control(IGC)approach was proposed for large caliber naval gun guided projectile,which was robust to target maneuver,canard dynamic characteristics,and multiple constraints,such as impact angle,limited measurement of line of sight(LOS)angle rate and nonlinear saturation of canard deflection.Initially,a strict feedback cascade model of IGC in longitudinal plane was established,and extended state observer(ESO)was designed to estimate LOS angle rate and uncertain disturbances with unknown boundary inside and outside of system,including aerodynamic parameters perturbation,target maneuver and model errors.Secondly,aiming at zeroing LOS angle tracking error and LOS angle rate in finite time,a nonsingular terminal sliding mode(NTSM)was designed with adaptive exponential reaching law.Furthermore,combining with dynamic surface,which prevented the complex differential of virtual control laws,the fuzzy adaptive systems were designed to approximate observation errors of uncertain disturbances and to reduce chatter of control law.Finally,the adaptive Nussbaum gain function was introduced to compensate nonlinear saturation of canard deflection.The LOS angle tracking error and LOS angle rate were convergent in finite time and whole system states were uniform ultimately bounded,rigorously proven by Lyapunov stability theory.Hardware-in-the-loop simulation(HILS)and digital simulation experiments both showed FADS provided guided projectile with good guidance performance while striking targets with different maneuvering forms. 展开更多
关键词 Integrated guidance and control Multiple constraints Fuzzy adaptive Dynamic surface Nonsingular terminal sliding mode Extended state observer
下载PDF
Serret-Frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties 被引量:11
8
作者 廖煜雷 张铭钧 万磊 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期214-223,共10页
The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, externa... The path following problem for an underactuated unmanned surface vehicle(USV) in the Serret-Frenet frame is addressed. The control system takes account of the uncertain influence induced by model perturbation, external disturbance, etc. By introducing the Serret-Frenet frame and global coordinate transformation, the control problem of underactuated system(a nonlinear system with single-input and ternate-output) is transformed into the control problem of actuated system(a single-input and single-output nonlinear system), which simplifies the controller design. A backstepping adaptive sliding mode controller(BADSMC)is proposed based on backstepping design technique, adaptive method and theory of dynamic slide model control(DSMC). Then, it is proven that the state of closed loop system is globally stabilized to the desired configuration with the proposed controller. Simulation results are presented to illustrate the effectiveness of the proposed controller. 展开更多
关键词 path following underactuated unmanned surface vehicle backstepping dynamic sliding mode control
下载PDF
Robust H∞ Control of Uncertain Switched Systems: a Sliding Mode Control Design 被引量:17
9
作者 LIAN Jie ZHAO Jun 《自动化学报》 EI CSCD 北大核心 2009年第7期965-970,共6页
关键词 自动化系统 鲁棒分析 分析方法 滞后转换法
下载PDF
Adaptive sliding-mode path following control system of the underactuated USV under the influence of ocean currents 被引量:10
10
作者 CHEN Xiao LIU Zhong +2 位作者 ZHANG Jianqiang ZHOU Dechao DONG Jiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1271-1283,共13页
The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode pat... The path-following control of the asymmetry underactuated unmanned surface vehicle(USV) under external disturbances such as unknown constant and irrational ocean currents is discussed, and an adaptive sliding-mode path-following control system is proposed, which comprises a path-variable updated law,a modified integral line-of-sight(ILOS) guidance law based on a time-varying lookahead distance and adaptive feedback linearizing controllers combined with sliding-mode technique. A more accurate USV model without the assumption of having diagonal inertia and damping matrices is first presented, aiming at improving the performance of the path-following control. Next, the coordinate transformation is adopted to decouple the sway dynamic from the rudder angle, and the path-following errors dynamics without non-singular problem are presented in the moving Frenet-Serret frame. Then, based on the cascaded theorem and the adaptive sliding-mode method, the adaptive control law of position errors and course error are designed, among which the lookahead distance and integral gain are all computed as different functions of cross-track error to estimate and compensate the sideslip angle caused by external disturbances adaptively. Finally, according to the Lyapunov and cascaded theorem, the control system proposed is proved to be uniform globally asymptotic stability(UGAS) and uniform semiglobal exponential stability(USGES) when the control objectives are all achieved. Simulation results illustrate the precision and high-quality performance of this new controller. 展开更多
关键词 sliding-mode control unmanned surface vehicle(USV) integral line-of-sight(ILOS) path following proof of stability
下载PDF
Embedding-Based Sliding Mode Control for Linear Time Varying Systems
11
作者 Mohammad Reza Zarrabi Mohammad Hadi Farahi +2 位作者 Ali Jafar Koshkouei Sohrab Effati Keith Burnham 《Applied Mathematics》 2011年第4期487-495,共9页
In this paper, a novel strategy using embedding process and sliding surface is proposed. In this method, a state trajectory starting from a given initial point reaches a definite point on a sliding surface in the mini... In this paper, a novel strategy using embedding process and sliding surface is proposed. In this method, a state trajectory starting from a given initial point reaches a definite point on a sliding surface in the minimum time, and then tends to the origin along the sliding surface (SS). In the first, a SS is designed, then using an appropriate measure, an embedding is constructed to solve a time optimal control problem such that the system trajectory reaches the SS in minimum time, after that a control is designed such that the system trajectory tends to the origin along the SS. It is well-known that the main disadvantage of the use of sliding mode controls (SMCs) is a phenomenon, the so-called chattering. The proposed SMC here is piecewise continuous and chattering free. Some numerical examples is presented to illustrate the effectiveness and reliability of the proposed method. 展开更多
关键词 Time Optimal CONTROL Problem MEASURE Theory sliding mode CONTROL sliding surface Design EQUIVALENT CONTROL
下载PDF
Robust fuzzy sliding-mode control for T-S model based permanent magnet synchronous motor
12
作者 张细政 王耀南 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第S1期68-73,共6页
A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly forme... A fuzzy sliding-mode control (FSMC) scheme based on T-S fuzzy models was proposed for the permanent magnet synchronous motor (PMSM) drive system to solve the speed tracking problem. A T-S fuzzy model was firstly formed to represent the nonlinear system of PMSM. For converting the tracking control into a stabilization problem, a new control design was proposed to define the internal desired states. Then, the FSMC controller for PMSM system with parameter variation and load disturbance was designed based on the fuzzy model. The performance of the proposed controller was verified by experimental results on PMSM system. The results show that the FSMC scheme can drive the dynamics of PMSM into a designated sliding surface in finite time and guarantee the property of asymptotical stability. The information of upper bound of modeling errors as well as perturbations is not required when using the FSMC controller. 展开更多
关键词 PERMANENT MAGNET SYNCHRONOUS motor (PMSM) uncertain T-S nonlinear systems sliding-mode control fuzzy sliding surfaces linear matrix INEQUALITIES (LMIs)
下载PDF
New approaching condition for sliding mode control design with Lipschitz switching surface 被引量:2
13
作者 ZHENG Kai SHEN TieLong YAO Yu 《Science in China(Series F)》 2009年第11期2032-2044,共13页
In this paper, we concern the approaching condition of sliding mode control (SMC) with a Lipschitz switching surface that may be nonsmooth. New criteria on the relation between phase trajectories and an arbitrary Li... In this paper, we concern the approaching condition of sliding mode control (SMC) with a Lipschitz switching surface that may be nonsmooth. New criteria on the relation between phase trajectories and an arbitrary Lipschitz continuous surface are examined firstly. Filippov's differential inclusion is adopted to describe the dynamics of trajectories of the closed-loop system with SMC. Compared with Filippov's criteria for only smooth surface, new criteria are proposed by utilizing the cone conditions that allow the surface to be nonsmooth. This result also yields a new approaching condition of SMC design. Based on the new approaching condition, we develop the sliding mode controller for a class of nonlinear single-input single-output (SISO) systems, of which the switching surface is designed Lips- chitz continuous for the nonsmooth sliding motion. Finally, we provide a numerical example to verify the new design method. 展开更多
关键词 sliding mode control Filippov solution contingent cone linear Lipschitz switching surface
原文传递
Control of rotary double inverted pendulum system using LQR sliding surface based sliding mode controller
14
作者 Sondarangallage D.A.Sanjeewa Manukid Parnichkun 《Journal of Control and Decision》 EI 2022年第1期89-101,共13页
This paper presents LQR sliding surface-based Sliding Mode Controller(LQR-SMC)for balancing control of a Rotary Double Inverted Pendulum(RDIP)system.It is a challenging research topic in control engineering due to its... This paper presents LQR sliding surface-based Sliding Mode Controller(LQR-SMC)for balancing control of a Rotary Double Inverted Pendulum(RDIP)system.It is a challenging research topic in control engineering due to its nonlinearity and instability.The RDIP system uses only a motor to control two serially connected pendulums to stand at the upright position.The sliding surface is designed based on the LQR optimal gain.Nonsingular gain matrix is obtained by using the left inverse of the input matrix in the state space form of the system dynamics.The Lyapunov stability theory is used to determine the stability of the controller.To evaluate the performance of LQR-SMC,some performance indices,including the Integral Absolute Error(IAE),Integral Time Absolute Error(ITAE),and the Integrated Square Error(ISE),are used.System stability can be maintained by LQR-SMC under external disturbances as well as model and parameter uncertainties. 展开更多
关键词 Rotary double inverted pendulum linear quadratic regulator sliding surface based sliding mode control SMC LQR
原文传递
一种用于电液位置伺服系统控制的高阶滑模控制器的设计
15
作者 徐智 张家海 +1 位作者 王欣 刘凯 《机械设计与制造》 北大核心 2024年第2期111-115,共5页
这里提出了一种用于电液位置伺服系统控制的高阶滑模控制器的设计,以提高电液位置伺服系统的控制准确度。从电液伺服系统的构造出发,分析了其组成结果与工作过程。以外界输入电压为依据,求取了滑阀的动力学模型,通过液压缸两个子缸压力... 这里提出了一种用于电液位置伺服系统控制的高阶滑模控制器的设计,以提高电液位置伺服系统的控制准确度。从电液伺服系统的构造出发,分析了其组成结果与工作过程。以外界输入电压为依据,求取了滑阀的动力学模型,通过液压缸两个子缸压力差值形成的负载压力,计算出了滑阀动态运动时产生的流量,并通过负载压力得出了负载的位移平衡方程,进而以滑阀位移、负载位移及输入电压等系统的状态参数,获取了电液伺服系统的动力学模型。引入超螺旋控制器和广义超螺旋控制器的一般表达形式,以输入电压误差及负载位移误差为依据,构造了系统的滑动面函数,并将滑动面函数的导师与超螺旋控制器相结合,构造了基于超螺旋控制器的滑模控制器,为了提高系统的收敛速度,在基于超螺旋控制器的滑模控制器的基础上,借助广义超螺旋控制器,构造了高阶滑模控制器,以对电液位置伺服系统进行控制。实验结果表明,所提算法不仅具有较好的响应速度,而且对电液位置伺服系统的控制准确度较高,在对目标轨迹跟踪时,所提方法比模糊干扰观测器方法的跟踪准确度提高了33.11%。说明所提方法对电液位置伺服系统具有较好的控制性能。 展开更多
关键词 电液位置伺服系统 高阶滑模控制器 超螺旋控制器 广义超螺旋控制器 滑动面函数
下载PDF
无人机舵面故障高阶滑模重构观测器设计及主动容错控制
16
作者 刘勇求 刘晓峰 《火力与指挥控制》 CSCD 北大核心 2024年第4期170-176,共7页
针对无人机舵面损伤故障容错问题,提出了基于二阶非奇异终端滑模重构观测器及主动容错设计方法。在分析舵面正常偏转运动学和动力学特性基础上,构建了无人机典型舵面故障非线性特性模型。提出无人机舵面故障的高阶滑模重构滑模观测器设... 针对无人机舵面损伤故障容错问题,提出了基于二阶非奇异终端滑模重构观测器及主动容错设计方法。在分析舵面正常偏转运动学和动力学特性基础上,构建了无人机典型舵面故障非线性特性模型。提出无人机舵面故障的高阶滑模重构滑模观测器设计方案;引入线性变换降维简化观测器设计程式;将终端滑模和非奇异终端滑模结合起来,实现滑模运动有限时间快速收敛;综合自适应律、线性矩阵不等式设计观测器系数矩阵,确保状态估计偏差有界稳定。提出集状态与故障重构于一体的主动容错控制方案,并通过仿真算例检验所提方案的有效性。 展开更多
关键词 舵面故障 二阶非奇异终端滑模 无人机 主动容错 观测器
下载PDF
自适应量化神经网络滑模无人船编队控制
17
作者 宁君 刘子涵 +2 位作者 李伟 李铁山 陈俊龙 《上海海事大学学报》 北大核心 2024年第2期7-13,共7页
针对复杂海洋环境下欠驱动水面无人船(unmanned surface vehicle,USV)编队控制存在的模型不确定性、参数摄动、控制输入量化等问题,提出一种自适应量化神经网络滑模控制算法。在USV运动学子系统中,设计基于内外环控制策略的制导律,解决... 针对复杂海洋环境下欠驱动水面无人船(unmanned surface vehicle,USV)编队控制存在的模型不确定性、参数摄动、控制输入量化等问题,提出一种自适应量化神经网络滑模控制算法。在USV运动学子系统中,设计基于内外环控制策略的制导律,解决USV欠驱动问题。由于所采用的动力学模型中含有未知项和外界环境干扰,故在USV动力学子系统中通过使用径向基函数神经网络实现对干扰的估计。采用一种线性解析模型来描述输入量化过程。所设计的控制系统不需要量化参数的先验信息。基于输入-状态稳定性理论证明了系统稳定性。通过仿真实验验证了所提算法的有效性。 展开更多
关键词 自适应滑模控制 输入量化 编队控制 水面无人船(USV)
下载PDF
基于新型滑模观测器的PMSM无传感器控制
18
作者 余莉 张政 沈喆磊 《信息技术》 2024年第11期51-56,62,共7页
针对永磁同步电机无传感器控制中传统滑模观测器产生的抖振现象,提出新型滑模观测器。通过引入新型饱和函数代替符号函数,采用积分滑模面和可变增益,以抑制抖振,通过Lyapunov定理对其进行稳定性分析,并结合锁相环技术提取转速和转子位... 针对永磁同步电机无传感器控制中传统滑模观测器产生的抖振现象,提出新型滑模观测器。通过引入新型饱和函数代替符号函数,采用积分滑模面和可变增益,以抑制抖振,通过Lyapunov定理对其进行稳定性分析,并结合锁相环技术提取转速和转子位置信息。仿真结果表明:新型滑模观测器能够减小抖振,提升系统对转速和转子位置的估计精度。 展开更多
关键词 永磁同步电机 新型饱和函数 积分滑模面 可变增益 滑模观测器
下载PDF
风扰下变质量四旋翼轨迹跟踪控制
19
作者 蔡晓军 郑柏超 《自动化与仪表》 2024年第8期104-111,共8页
针对存在风扰和变质量负载扰动的四旋翼无人机轨迹跟踪控制问题,提出了一种基于降阶广义比例积分观测器的动态面模糊滑模控制方法。首先,建立含风扰和变质量负载扰动的四旋翼无人机系统模型;其次,结合四旋翼无人机系统模型设计降阶广义... 针对存在风扰和变质量负载扰动的四旋翼无人机轨迹跟踪控制问题,提出了一种基于降阶广义比例积分观测器的动态面模糊滑模控制方法。首先,建立含风扰和变质量负载扰动的四旋翼无人机系统模型;其次,结合四旋翼无人机系统模型设计降阶广义比例积分观测器估计外界风扰;再次,设计动态面滑模控制器,并采用模糊控制模糊化切换增益,以此有效地抑制抖振;然后,通过Lyapunov稳定性证明四旋翼无人机系统的稳定性;最后,通过Matlab-Simulink进行3种控制方法的仿真比较。仿真结果表明,当存在风扰和变质量负载扰动时,该控制方法抗风扰能力更强,稳定性更好,位姿跟踪精度更高。 展开更多
关键词 四旋翼无人机 变质量 风扰 降阶广义比例积分观测器 动态面滑模控制 模糊控制
下载PDF
故障检测与重构下基于AFTSMO的ROV三维航迹跟踪控制
20
作者 唐军 钱明炎 +1 位作者 陈善颖 谢彬 《船海工程》 北大核心 2024年第4期87-93,共7页
针对传统的滑模观测器在缆控水下机器人(ROV)系统状态估计与故障重构过程中存在渐近收敛、无法及时准确重构故障信号的问题,提出一种基于自适应快速终端滑模观测器(adaptive fast terminal sliding mode observer)的故障检测和控制优化... 针对传统的滑模观测器在缆控水下机器人(ROV)系统状态估计与故障重构过程中存在渐近收敛、无法及时准确重构故障信号的问题,提出一种基于自适应快速终端滑模观测器(adaptive fast terminal sliding mode observer)的故障检测和控制优化方法。建立带有推进器故障、未知外界干扰和模型参数不确定性等复合干扰的ROV系统故障模型;设计具有自适应特性的快速终端滑模控制器,保证所有的状态估计误差在有限时间内收敛;通过等效输出误差注入法对推进器引起的故障进行估计重构。采用Lyapunov稳定性理论验证控制系统的稳定性,仿真结果表明,所设计的故障检测方法能够快速检测和重构故障,保证ROV系统较高的跟踪精度,并通过实验验证了所提算法的有效性。 展开更多
关键词 水下机器人 RBF神经网络 快速终端滑模面 有限时间控制 故障重构
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部