Low pressure sputtering with a controlled ratio of ion flux to deposited atom flux at the condensing surface is one of the main directions of development of magnetron sputtering methods. Unbalanced magnetron sputterin...Low pressure sputtering with a controlled ratio of ion flux to deposited atom flux at the condensing surface is one of the main directions of development of magnetron sputtering methods. Unbalanced magnetron sputtering, by producing dense secondary plasma around the substrate, provides a high ion current density. The closed-field unbalanced magnetron sputtering system (CFUBMS) has been established as a versatile technique for high-rate deposition high-quality metal, alloy, and ceramic thin films. The'key factor in the CFUBMS system is the ability to transport high ion currents to the substrate, which can enhance the formation of full dense coatings at relatively low value homologous temperature. The investigation shows that the energy of ions incidenced at the substrate and the ratio of the flux of these ions to the flux of condensing atoms are the fundamental parameters in determining the structure and properties of films produced by ion-assisted deposition processes. Increasing ion bombardment during deposition combined with increasing mobility of the condensing atoms favors the formation of a dense microstructure and a smooth surface.展开更多
In this paper, a novel harmonic modeling technique by utilizing the concept of multi-terminal components is presented and applied to frequency scan analysis in multiphase distribution system. The proposed modeling tec...In this paper, a novel harmonic modeling technique by utilizing the concept of multi-terminal components is presented and applied to frequency scan analysis in multiphase distribution system. The proposed modeling technique is based on gathering the same phase busses and elements as a separate group (phase grouping technique, PGT) and uses multi-terminal components to model three-phase distribution system. Using multi- terminal component and PGT, distribution system elements, particularly, lines and transformers can effectively be modeled even in harmonic domain. The proposed modeling technique is applied to a test system for frequency scan analysis in order to show the frequency response of the test system in single and three-phase conditions. Consequently, the effects of mutual coupling and transformer connection types on three-phase frequency scan responses are analyzed for symmetrical and asymmetrical line configurations.展开更多
针对电网电压不平衡下电流平衡及功率恒定问题,提出改进型光储虚拟同步发电机(virtual synchronous generator,VSG)控制策略,该策略通过引入虚拟阻抗技术和双二阶广义积分器(double second order generalized integrator,DSOGI)实现正...针对电网电压不平衡下电流平衡及功率恒定问题,提出改进型光储虚拟同步发电机(virtual synchronous generator,VSG)控制策略,该策略通过引入虚拟阻抗技术和双二阶广义积分器(double second order generalized integrator,DSOGI)实现正负序分量的有效分离,并基于瞬时功率理论优化电流和功率的协调控制,显著提高了系统在不平衡电网条件下的电流平衡性和功率稳定性。首先,构建基于电机瞬态模型的光伏储能VSG系统的数学模型,以深入理解和模拟VSG在实际电网中的动态行为。通过应用双二阶广义积分器技术,实现了正序与负序分量的有效分离,并基于瞬时功率理论和负序虚拟复阻抗技术,进一步实现电流和功率的协调控制,确保电流平衡及功率恒定。最后,利用MATLA/Simulink软件构建仿真模型,模拟光伏储能系统在不平衡电网状态下的运行情况,仿真结果表明所提控制策略显著提高了控制策略的精度和响应速度,可确保动态电网环境中的操作效率和可靠性。展开更多
文摘Low pressure sputtering with a controlled ratio of ion flux to deposited atom flux at the condensing surface is one of the main directions of development of magnetron sputtering methods. Unbalanced magnetron sputtering, by producing dense secondary plasma around the substrate, provides a high ion current density. The closed-field unbalanced magnetron sputtering system (CFUBMS) has been established as a versatile technique for high-rate deposition high-quality metal, alloy, and ceramic thin films. The'key factor in the CFUBMS system is the ability to transport high ion currents to the substrate, which can enhance the formation of full dense coatings at relatively low value homologous temperature. The investigation shows that the energy of ions incidenced at the substrate and the ratio of the flux of these ions to the flux of condensing atoms are the fundamental parameters in determining the structure and properties of films produced by ion-assisted deposition processes. Increasing ion bombardment during deposition combined with increasing mobility of the condensing atoms favors the formation of a dense microstructure and a smooth surface.
文摘In this paper, a novel harmonic modeling technique by utilizing the concept of multi-terminal components is presented and applied to frequency scan analysis in multiphase distribution system. The proposed modeling technique is based on gathering the same phase busses and elements as a separate group (phase grouping technique, PGT) and uses multi-terminal components to model three-phase distribution system. Using multi- terminal component and PGT, distribution system elements, particularly, lines and transformers can effectively be modeled even in harmonic domain. The proposed modeling technique is applied to a test system for frequency scan analysis in order to show the frequency response of the test system in single and three-phase conditions. Consequently, the effects of mutual coupling and transformer connection types on three-phase frequency scan responses are analyzed for symmetrical and asymmetrical line configurations.
文摘针对电网电压不平衡下电流平衡及功率恒定问题,提出改进型光储虚拟同步发电机(virtual synchronous generator,VSG)控制策略,该策略通过引入虚拟阻抗技术和双二阶广义积分器(double second order generalized integrator,DSOGI)实现正负序分量的有效分离,并基于瞬时功率理论优化电流和功率的协调控制,显著提高了系统在不平衡电网条件下的电流平衡性和功率稳定性。首先,构建基于电机瞬态模型的光伏储能VSG系统的数学模型,以深入理解和模拟VSG在实际电网中的动态行为。通过应用双二阶广义积分器技术,实现了正序与负序分量的有效分离,并基于瞬时功率理论和负序虚拟复阻抗技术,进一步实现电流和功率的协调控制,确保电流平衡及功率恒定。最后,利用MATLA/Simulink软件构建仿真模型,模拟光伏储能系统在不平衡电网状态下的运行情况,仿真结果表明所提控制策略显著提高了控制策略的精度和响应速度,可确保动态电网环境中的操作效率和可靠性。