This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on...This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on the reliability index and the reli- ability level, the reliability examination plan was analyzed and a test device for the overload protection of moulded case cir- cuit-breaker was developed. In the reliability test of overload protection, two power sources were used, which reduced the time of conversion and regulation between two different test currents in the overload protection test, which made the characteristic test more accurate. The test device was designed on the base of a Windows system, which made its operation simple and friendly.展开更多
Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff i...Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff inevitably constrains the application of graphene for the conventional field-effect transistor (FET) devices in digital applications. However, this shortcoming has not dampened the enthusiasm of the research community toward graphene electronics. Aside from high mobility, graphene offers numerous other amazing electrical, optical, thermal, and mechanical properties that continually motivate innovations.展开更多
In-system programmable devices are products that combined modern electronic techniques and semiconductor techniques.They are indispensable devices in designing modern circuits and systems.This paper presents two pract...In-system programmable devices are products that combined modern electronic techniques and semiconductor techniques.They are indispensable devices in designing modern circuits and systems.This paper presents two practical circuits designed with programmable devices and its design method.By introducing programmable devices into gas sensor circuits,we can further improve system reliability,stability,sensitivity and integration degree,and enhance flexibility of system design.展开更多
Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. ...Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. Methods to lower IOP remain the first line treatments for the condition. Current methods of IOP measurement do not permit temporary noninvasive monitoring 24-hour IOP on a periodic basis. Ongoing research will in time provide a means of developing a device that will enable continuous or temporary monitoring of IOP. At present a device suitable for clinical use is not yet available.This review contains a description of different devices currently in development for measuring IOP: soft contact lens, LC resonant circuits and on-chip sensing devices. All of them use application-specific integrated circuits (ASICS) to process the measured signals and send them to recording devices. Soft contact lens devices are based on an embedded strain gauge, LC circuits vary their resonance frequency depending on the intraocular pressure (IOP) and, finally, on-chip sensing devices include an integrated microelectromechanical sensor (MEMS). MEMS are capacitors whose capacity varies with IOP. These devices allow for an accurate IOP measurement (up to +/– 0.2 mm Hg) with high sampling rates (up to 1 sample/min) and storing 1 week of raw data. All of them operate in an autonomous way and even some of them are energetically independent.展开更多
In this review,the advanced microwave devices based on the integrated passive device(IPD)technology are expounded and discussed in detail,involving the performance breakthroughs and circuit innovations.Then,the develo...In this review,the advanced microwave devices based on the integrated passive device(IPD)technology are expounded and discussed in detail,involving the performance breakthroughs and circuit innovations.Then,the development trend of IPD-based multifunctional microwave circuits is predicted further by analyzing the current research hot spots.This paper discusses a distinctive research area for microwave circuits and mobile-terminal radio-frequency integrated chips.展开更多
Device physics research for submicron and deep submicron space microelectronics devices and integrated circuits will be described in three topics.1.Thin film submicron and deep submicron SOS / CMOS devices and integra...Device physics research for submicron and deep submicron space microelectronics devices and integrated circuits will be described in three topics.1.Thin film submicron and deep submicron SOS / CMOS devices and integrated circuits.2.Deep submicron LDD CMOS devices and integrated circuits.3.C band and Ku band microwave GaAs MESFET and III-V compound hetrojunction HEM T and HBT devices and integrated circuits.展开更多
Green technologies refer to environmentally sustainable approaches to our daily lifestyle, industry, computing, IT, and literally everything. As the enabling technology, the electronics, including circuits, systems, a...Green technologies refer to environmentally sustainable approaches to our daily lifestyle, industry, computing, IT, and literally everything. As the enabling technology, the electronics, including circuits, systems, and devices, are the key areas of research interests in green technologies. To be green means lower power and higher energy efficiency in the user's side and better management of energy sources in the provider's side. In the recent several years, the energy-efficient devices, circuits, and systems have received considerable attention in both academia and industry. It has been a clear trend that it is and will continue to be an area of extensive research interests in the coming years. In connection with the above view, and being invited by the Editor, Ms. Jasmine Xuan Xie, we have proposed this Special Section on Green Technologies:展开更多
The tokamak HT-7U project has been funded as a Chinese national project since 1998. The main object of the project is to build a nuclear fusion experimental device with divertor configuration, which is designed by the...The tokamak HT-7U project has been funded as a Chinese national project since 1998. The main object of the project is to build a nuclear fusion experimental device with divertor configuration, which is designed by the Institute of Plasma Physics, the Chinese Academy of Sciences (ASIPP). It is a full superconducting device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coil. During the operation of the device, the operational parameter of device should be checked by technical diagnosis. This paper describes the design of circuit for checldng short between every two parts of the HT7U device. The main contents of design include circuit of data acquisition and data processing of computer.展开更多
A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit ...A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.展开更多
The dynamics of a non-smooth electric circuit with an order gap between its parameters is investigated in this paper. Different types of symmetric bursting phenomena can be observed in numerical simulations. Their dyn...The dynamics of a non-smooth electric circuit with an order gap between its parameters is investigated in this paper. Different types of symmetric bursting phenomena can be observed in numerical simulations. Their dynamical behaviours are discussed by means of slow-fast analysis. Furthermore, the generalized Jacobian matrix at the non-smooth boundaries is introduced to explore the bifurcation mechanism for the bursting solutions, which can also be used to account for the evolution of the complicated structures of the phase portraits. With the variation of the parameter, the periodic symmetric bursting can evolve into chaotic symmetric bursting via period-doubling bifurcation.展开更多
In recent years, the narrow bandgap antimonide based compound semiconductors (ABCS) are widely regarded as the first candidate materials for fabrication of the third generation infrared photon detectors and integrated...In recent years, the narrow bandgap antimonide based compound semiconductors (ABCS) are widely regarded as the first candidate materials for fabrication of the third generation infrared photon detectors and integrated circuits with ultra-high speed and ultra-low power consumption. Due to their unique bandgap structure and physical properties, it makes a vast space to develop various novel devices, and becomes a hot research area in many developed countries such as USA, Japan, Germany and Israel etc. Research progress in the preparation and application of ABCS materials, existing problems and some latest results are briefly introduced.展开更多
Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligen...Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligent robots through a pro-found intersection of neuroscience and robotics has received much attention.Neuromorphic circuits based on memristors used to construct hardware neural networks have proved to be a promising solution of shattering traditional control limita-tions in the field of robot control,showcasing characteristics that enhance robot intelligence,speed,and energy efficiency.Start-ing with introducing the working mechanism of memristors and peripheral circuit design,this review gives a comprehensive analysis on the biomimetic information processing and biomimetic driving operations achieved through the utilization of neuro-morphic circuits in brain-like control.Four hardware neural network approaches,including digital-analog hybrid circuit design,novel device structure design,multi-regulation mechanism,and crossbar array,are summarized,which can well simulate the motor decision-making mechanism,multi-information integration and parallel control of brain at the hardware level.It will be definitely conductive to promote the application of memristor-based neuromorphic circuits in areas such as intelligent robotics,artificial intelligence,and neural computing.Finally,a conclusion and future prospects are discussed.展开更多
The fast-slow effect can be observed in a typical non-smooth electric circuit with order gap between the natural frequency and the excitation frequency. Numerical simulations are employed to show complicated behaviour...The fast-slow effect can be observed in a typical non-smooth electric circuit with order gap between the natural frequency and the excitation frequency. Numerical simulations are employed to show complicated behaviours, especially different types of busting phenomena. The bifurcation mechanism for the bursting solutions is analysed by assuming the forms of the solutions and introducing the generalized Jacobian matrix at the non-smooth boundaries, which can also be used to account for the evolution of the complicated structures of the phase portraits with the variation of the parameter. Period-adding bifurcation has been explored through the computation of the eigenvalues related to the solutions. At the non-smooth boundaries the so-called 'single crossing bifurcation' can occur, corresponding to the case where the eigenvalues jump only once across the imaginary axis, which leads the periodic burster to have a quasi-periodic oscillation.展开更多
The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. ...The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.展开更多
处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检...处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。展开更多
This paper introduces a novel automatic physical synthesis methodology for analog circuits based on the signal-flow analysis.Circuit analysis sub-system adopts the newly advanced methodology,circuit topology analysis,...This paper introduces a novel automatic physical synthesis methodology for analog circuits based on the signal-flow analysis.Circuit analysis sub-system adopts the newly advanced methodology,circuit topology analysis,and circuit sensitivity analysis to generate layout constraints and control performance degradations.Considering the heuristic information about signal-flow,complexity of the methodology is less than the pure performance-driven methodology.And then these constraints are implemented in device generation,placement,and routing sub-systems separately,which makes the different constraints be satisfied at most easily implemented stages.Excellent circuit performance obtained by the methodology is demonstrated by practical circuit examples.展开更多
A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main dischar...A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseu- dospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface ttashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current waveform of maximum 25 kA was generated with a rise time and time to half peak value of 17.2 μs and 336μs respectively.展开更多
基金Project (No. E2005000039) supported by the Natural Science Foun-dation of Hebei Province, China
文摘This paper analyzed the reliability and put forward the reliability index of overload protection for moulded case circuit breaker. The success rate was adopted as its reliability index of overload protection. Based on the reliability index and the reli- ability level, the reliability examination plan was analyzed and a test device for the overload protection of moulded case cir- cuit-breaker was developed. In the reliability test of overload protection, two power sources were used, which reduced the time of conversion and regulation between two different test currents in the overload protection test, which made the characteristic test more accurate. The test device was designed on the base of a Windows system, which made its operation simple and friendly.
文摘Recent progress of research for graphene applications in electronic and optoelectronic devices is reviewed, and recent developments in circuits based on graphene devices are summarized. The bandgap-mobility tradeoff inevitably constrains the application of graphene for the conventional field-effect transistor (FET) devices in digital applications. However, this shortcoming has not dampened the enthusiasm of the research community toward graphene electronics. Aside from high mobility, graphene offers numerous other amazing electrical, optical, thermal, and mechanical properties that continually motivate innovations.
文摘In-system programmable devices are products that combined modern electronic techniques and semiconductor techniques.They are indispensable devices in designing modern circuits and systems.This paper presents two practical circuits designed with programmable devices and its design method.By introducing programmable devices into gas sensor circuits,we can further improve system reliability,stability,sensitivity and integration degree,and enhance flexibility of system design.
文摘Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. Methods to lower IOP remain the first line treatments for the condition. Current methods of IOP measurement do not permit temporary noninvasive monitoring 24-hour IOP on a periodic basis. Ongoing research will in time provide a means of developing a device that will enable continuous or temporary monitoring of IOP. At present a device suitable for clinical use is not yet available.This review contains a description of different devices currently in development for measuring IOP: soft contact lens, LC resonant circuits and on-chip sensing devices. All of them use application-specific integrated circuits (ASICS) to process the measured signals and send them to recording devices. Soft contact lens devices are based on an embedded strain gauge, LC circuits vary their resonance frequency depending on the intraocular pressure (IOP) and, finally, on-chip sensing devices include an integrated microelectromechanical sensor (MEMS). MEMS are capacitors whose capacity varies with IOP. These devices allow for an accurate IOP measurement (up to +/– 0.2 mm Hg) with high sampling rates (up to 1 sample/min) and storing 1 week of raw data. All of them operate in an autonomous way and even some of them are energetically independent.
基金Beijing Natural Science Foundation(No.JQ19018)National Natural Science Foundations of China(No.U20A20203 and No.61971052)National Special Support Program for High-Level Personnel Recruitment(No.2018RA2131)。
文摘In this review,the advanced microwave devices based on the integrated passive device(IPD)technology are expounded and discussed in detail,involving the performance breakthroughs and circuit innovations.Then,the development trend of IPD-based multifunctional microwave circuits is predicted further by analyzing the current research hot spots.This paper discusses a distinctive research area for microwave circuits and mobile-terminal radio-frequency integrated chips.
文摘Device physics research for submicron and deep submicron space microelectronics devices and integrated circuits will be described in three topics.1.Thin film submicron and deep submicron SOS / CMOS devices and integrated circuits.2.Deep submicron LDD CMOS devices and integrated circuits.3.C band and Ku band microwave GaAs MESFET and III-V compound hetrojunction HEM T and HBT devices and integrated circuits.
文摘Green technologies refer to environmentally sustainable approaches to our daily lifestyle, industry, computing, IT, and literally everything. As the enabling technology, the electronics, including circuits, systems, and devices, are the key areas of research interests in green technologies. To be green means lower power and higher energy efficiency in the user's side and better management of energy sources in the provider's side. In the recent several years, the energy-efficient devices, circuits, and systems have received considerable attention in both academia and industry. It has been a clear trend that it is and will continue to be an area of extensive research interests in the coming years. In connection with the above view, and being invited by the Editor, Ms. Jasmine Xuan Xie, we have proposed this Special Section on Green Technologies:
文摘The tokamak HT-7U project has been funded as a Chinese national project since 1998. The main object of the project is to build a nuclear fusion experimental device with divertor configuration, which is designed by the Institute of Plasma Physics, the Chinese Academy of Sciences (ASIPP). It is a full superconducting device, consisting of superconducting toroidal field (TF) coils and superconducting poloidal field (PF) coil. During the operation of the device, the operational parameter of device should be checked by technical diagnosis. This paper describes the design of circuit for checldng short between every two parts of the HT7U device. The main contents of design include circuit of data acquisition and data processing of computer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.60536030,61036002,60776024,60877035 and 61036009)National High Technology Research and Development Program of China(Grant Nos.2007AA04Z329 and 2007AA04Z254)
文摘A three-terminal silicon-based light emitting device is proposed and fabricated in standard 0.35 μm complementary metal-oxide-semiconductor technology. This device is capable of versatile working modes: it can emit visible to near infra-red (NIR) light (the spectrum ranges from 500 nm to 1000 nm) in reverse bias avalanche breakdown mode with working voltage between 8.35 V-12 V and emit NIR light (the spectrum ranges from 900 nm to 1300 nm) in the forward injection mode with working voltage below 2 V. An apparent modulation effect on the light intensity from the polysilicon gate is observed in the forward injection mode. Furthermore, when the gate oxide is broken down, NIR light is emitted from the polysilicon/oxide/silicon structure. Optoelectronic characteristics of the device working in different modes are measured and compared. The mechanisms behind these different emissions are explored.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972091,20976075 and 10872080)
文摘The dynamics of a non-smooth electric circuit with an order gap between its parameters is investigated in this paper. Different types of symmetric bursting phenomena can be observed in numerical simulations. Their dynamical behaviours are discussed by means of slow-fast analysis. Furthermore, the generalized Jacobian matrix at the non-smooth boundaries is introduced to explore the bifurcation mechanism for the bursting solutions, which can also be used to account for the evolution of the complicated structures of the phase portraits. With the variation of the parameter, the periodic symmetric bursting can evolve into chaotic symmetric bursting via period-doubling bifurcation.
文摘In recent years, the narrow bandgap antimonide based compound semiconductors (ABCS) are widely regarded as the first candidate materials for fabrication of the third generation infrared photon detectors and integrated circuits with ultra-high speed and ultra-low power consumption. Due to their unique bandgap structure and physical properties, it makes a vast space to develop various novel devices, and becomes a hot research area in many developed countries such as USA, Japan, Germany and Israel etc. Research progress in the preparation and application of ABCS materials, existing problems and some latest results are briefly introduced.
文摘Robots are widely used,providing significant convenience in daily life and production.With the rapid development of artificial intelligence and neuromorphic computing in recent years,the realization of more intelligent robots through a pro-found intersection of neuroscience and robotics has received much attention.Neuromorphic circuits based on memristors used to construct hardware neural networks have proved to be a promising solution of shattering traditional control limita-tions in the field of robot control,showcasing characteristics that enhance robot intelligence,speed,and energy efficiency.Start-ing with introducing the working mechanism of memristors and peripheral circuit design,this review gives a comprehensive analysis on the biomimetic information processing and biomimetic driving operations achieved through the utilization of neuro-morphic circuits in brain-like control.Four hardware neural network approaches,including digital-analog hybrid circuit design,novel device structure design,multi-regulation mechanism,and crossbar array,are summarized,which can well simulate the motor decision-making mechanism,multi-information integration and parallel control of brain at the hardware level.It will be definitely conductive to promote the application of memristor-based neuromorphic circuits in areas such as intelligent robotics,artificial intelligence,and neural computing.Finally,a conclusion and future prospects are discussed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10972091 and 10872080)
文摘The fast-slow effect can be observed in a typical non-smooth electric circuit with order gap between the natural frequency and the excitation frequency. Numerical simulations are employed to show complicated behaviours, especially different types of busting phenomena. The bifurcation mechanism for the bursting solutions is analysed by assuming the forms of the solutions and introducing the generalized Jacobian matrix at the non-smooth boundaries, which can also be used to account for the evolution of the complicated structures of the phase portraits with the variation of the parameter. Period-adding bifurcation has been explored through the computation of the eigenvalues related to the solutions. At the non-smooth boundaries the so-called 'single crossing bifurcation' can occur, corresponding to the case where the eigenvalues jump only once across the imaginary axis, which leads the periodic burster to have a quasi-periodic oscillation.
文摘The paper describes the application of an ANN based approach to the identification of the parameters relevant to the steady state behavior of composite power electronic device models of circuit simulation software. The identification of model parameters of IGBT in PSPICE using BP neural network is illustrated.
文摘处于改建阶段的智能变电站采样模式复杂,继电保护装置难以发现采样回路轻微异常,导致回路隐患暴露时间严重滞后。针对上述问题,分析改建时期智能变电站的采样模式和二次设备配置情况,提出基于同源录波数据比对的继电保护采样回路异常检测方法。首先,利用双向编码器表征(bidirectional encoder representations from transformers,BERT)语言模型与余弦相似度算法,实现同源录波数据的通道匹配。然后,利用重采样技术和曼哈顿距离完成波形的采样频率统一与时域对齐。最后,基于动态时间规整(dynamic time warping,DTW)算法提出改进算法,并结合采样点偏移量共同设置采样回路的异常判据。算例分析表明,该方法可以完成录波数据的同源通道匹配,实现波形的一致性对齐,并且相比于传统DTW算法,改进DTW算法对异常状态识别的灵敏性和准确性更高。根据异常判据能够有效检测继电保护采样回路的异常状态,确保了智能变电站的安全可靠运行。
文摘This paper introduces a novel automatic physical synthesis methodology for analog circuits based on the signal-flow analysis.Circuit analysis sub-system adopts the newly advanced methodology,circuit topology analysis,and circuit sensitivity analysis to generate layout constraints and control performance degradations.Considering the heuristic information about signal-flow,complexity of the methodology is less than the pure performance-driven methodology.And then these constraints are implemented in device generation,placement,and routing sub-systems separately,which makes the different constraints be satisfied at most easily implemented stages.Excellent circuit performance obtained by the methodology is demonstrated by practical circuit examples.
文摘A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseu- dospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface ttashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current waveform of maximum 25 kA was generated with a rise time and time to half peak value of 17.2 μs and 336μs respectively.