The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rar...The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rare earth (extraction) production. Simulation experiments with industrial operation data prove the effectiveness of the hybrid soft-(sensor).展开更多
Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the err...Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness.展开更多
The results of an expert system of lanthanide intermetallic compounds using artificial neural networks and chemical bond parameter method were reported. Two pattern recognition neural models, one for prediction of the...The results of an expert system of lanthanide intermetallic compounds using artificial neural networks and chemical bond parameter method were reported. Two pattern recognition neural models, one for prediction of the occurrence of 1 : 1 lanthanide intermetallic compounds with CsClstructure and the other for prediction of congruent or incongruent melting types, were developed. Four regression neural models were also developed for prediction of melting point of these compounds. In order to get rid of overfitting, cross-vahdation method was used for the neural models. And satisfactory results were obtained in all of the neural models in this paper.展开更多
This paper presents a new earth-fault detection algorithm for unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm is based on capacitance calculation from transient im...This paper presents a new earth-fault detection algorithm for unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm is based on capacitance calculation from transient impedance and dominant transient frequency. The Discrete Fourier Transform (DFT) method is used to determine the dominant transient frequency. The values of voltage and current earth modes are calculated in the period of the dominant transient frequency, then the transient impedance can be determined, from which we can calculate the earth capacitance. The calculated capacitance gives an indication about if the feeder is faulted or not. The algorithm is less dependent on the fault resistance and the faulted feeder parameters; it mainly depends on the background network. The network is simulated by ATP/EMTP program. Several different fault conditions are covered in the simulation process, different fault inception angles, fault locations and fault resistances.展开更多
The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius ...The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.展开更多
The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters...The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake.展开更多
This paper presents a novel transient current differential algorithm for earth fault detection in unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm uses the transien...This paper presents a novel transient current differential algorithm for earth fault detection in unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm uses the transient residual currents, which are very sensitive for earth faults detection. The transient values of residual currents are calculated for each feeder in the network and used as an earth fault indicator. The flow of residual currents is investigated. It is found that the residual current for the faulted feeder is equal to the summation of all residual currents for all other healthy feedersl Based on this investigation, a differential technique is proposed. A percentage restrain performance is proposed to ensure the selectivity and security of the algorithm. The transient algorithm is very sensitive for earth fault incidence. To apply the proposed algorithm, the residual currents can be measured easily by one sensor for each feeder with no need to voltage measurement. The proposed algorithm is less dependent on the fault resistance and the faulted feeder parameters. The network is simulated by ATP/EMTP program. Different fault conditions are covered in the simulation process: different fault inception angles, fault locations and fault resistances.展开更多
By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal serv...By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal servers,while the resource limita-tion of both computation and storage on satellites is the impor-tant factor affecting the maximum task completion time.In this paper,we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs,such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood.To satisfy the delay requirement of delay-sensi-tive task,we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline,and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites.Simulation results demonstrate the effective-ness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.展开更多
An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geod...An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geodetic surveying, ionosphereand sea-level observations,展开更多
Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS sat...Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.展开更多
The assay and recovery of rare earth elements (REEs) in the leaching process is being determined using expensive analytical methods: inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductive...The assay and recovery of rare earth elements (REEs) in the leaching process is being determined using expensive analytical methods: inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). A neural network model to predict the effects of operational variables on the lanthanum, cerium, yttrium, and neodymium recovery in the leaching of apatite concentrate is presented in this article. The effects of leaching time (10 to 40 min), pulp densities (30% to 50%), acid concentrations (20% to 60%), and agitation rates (100 to 200 r/min), were investigated and optimized on the recovery of REEs in the laboratory at a leaching temperature of 60℃. The obtained data in the laboratory optimization process were used for training and testing the neural network. The feed-forward artificial neural network with a 4-5-5-1 arrangement was capable of estimating the leaching recovery of REEs. The neural network predicted values were in good agreement with the experimental results. The correlations of R=l in training stages, and R=0.971, 0.952, 0.985, and 0.98 in testing stages were a result of Ce, Nd, La, and Y recovery prediction respectively, and these values were usually acceptable. It was shown that the proposed neural network model accurately reproduced all the effects of the operation variables, and could be used in the simulation of a leaching plant for REEs.展开更多
In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth co...In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth component content. The hybrid models were composed of the extraction equilibrium calculation model and the Radial Basis Function (RBF) Neural Network (NN) error compensation model; the parameters of compensation model were optimized by the hierarchical genetic algorithms (HGA). In addition, application experiment research of this proposed method was carried out in the rare earth separation production process of a corporation. The result shows that this method is effective and can realize online measurement for the component content of rare earth in the countercurrent extraction.展开更多
A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN)...A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN) approach is employed to predict the thickness values of the obtained chromizing coatings based on the OAD tests results. The results revealed that the built model was reliable, the thickness values of chromizing coatings were well predicted at selected process parameters, and the predicted error lied in rational range.展开更多
Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computat...Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computation and storage resource are deployed on LEO satellites, which is called "LEO-MEC". Service request dispatching decision is very important for resource utilization of the whole LEO-MEC system and Qo E of MEC users. Another important problem is service placement that is closely coupled with request dispatching. This paper models the joint service request dispatching and service placement problem as an optimization problem, which is a Mixed Integer Linear Programming(MILP). Our proposed mechanism solves this problem and uses the solved decision variables to dispatch requests and place services. Simulation results show that our proposed mechanism can achieve better performance in terms of ratio of served users and average hop count compared with baseline mechanism.展开更多
Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algor...Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this al- gorithm are less than that of Shortest Path First (SPF) with different delay bound.展开更多
Complicated radio resource management,e.g.,handover condition,will trouble the user in non-terrestrial networks due to the impact of high mobility and hierarchical layouts which co-exist with terrestrial networks or v...Complicated radio resource management,e.g.,handover condition,will trouble the user in non-terrestrial networks due to the impact of high mobility and hierarchical layouts which co-exist with terrestrial networks or various platforms at different altitudes.It is necessary to optimize the handover strategy to reduce the signaling overhead and im⁃prove the service continuity.In this paper,a new handover strategy is proposed based on the convolutional neural network.Firstly,the handover process is modeled as a directed graph.Suppose a user knows its future signal strength,then he/she can search for the best handover strategy based on the graph.Secondly,a convolutional neural network is used to extract the underlying regularity of the best handover strategies of different users,based on which any user can make near-optimal handover decisions according to its historical signal strength.Numerical simulation shows that the proposed handover strategy can effi⁃ciently reduce the handover number while ensuring the signal strength.展开更多
An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated rec...An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling.展开更多
基金ProjectsupportedbytheNationalTenthFive Year PlanofKeyTechnology (2 0 0 2BA3 15A)
文摘The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rare earth (extraction) production. Simulation experiments with industrial operation data prove the effectiveness of the hybrid soft-(sensor).
基金Supported by National Natural Science Foundation of P.R.China(50474020,60534010,60504006)
文摘Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness.
文摘The results of an expert system of lanthanide intermetallic compounds using artificial neural networks and chemical bond parameter method were reported. Two pattern recognition neural models, one for prediction of the occurrence of 1 : 1 lanthanide intermetallic compounds with CsClstructure and the other for prediction of congruent or incongruent melting types, were developed. Four regression neural models were also developed for prediction of melting point of these compounds. In order to get rid of overfitting, cross-vahdation method was used for the neural models. And satisfactory results were obtained in all of the neural models in this paper.
文摘This paper presents a new earth-fault detection algorithm for unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm is based on capacitance calculation from transient impedance and dominant transient frequency. The Discrete Fourier Transform (DFT) method is used to determine the dominant transient frequency. The values of voltage and current earth modes are calculated in the period of the dominant transient frequency, then the transient impedance can be determined, from which we can calculate the earth capacitance. The calculated capacitance gives an indication about if the feeder is faulted or not. The algorithm is less dependent on the fault resistance and the faulted feeder parameters; it mainly depends on the background network. The network is simulated by ATP/EMTP program. Several different fault conditions are covered in the simulation process, different fault inception angles, fault locations and fault resistances.
文摘The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.
基金sponsored by the National Natural Science Foundation of China(61333002)Open Research Foundation of the State Key Laboratory of Geodesy and Earth’s Dynamics(SKLGED2018-5-4-E)+5 种基金Foundation of the Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems(ACIA2017002)111 projects under Grant(B17040)Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing(KLIGIP-2017A02)supported by the Three Gorges Research Center for geo-hazardMinistry of Education cooperation agreements of Krasnoyarsk Science Center and Technology BureauRussian Academy of Sciences。
文摘The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake.
文摘This paper presents a novel transient current differential algorithm for earth fault detection in unearthed (isolated) and compensated neutral medium voltage (MV) networks. The proposed algorithm uses the transient residual currents, which are very sensitive for earth faults detection. The transient values of residual currents are calculated for each feeder in the network and used as an earth fault indicator. The flow of residual currents is investigated. It is found that the residual current for the faulted feeder is equal to the summation of all residual currents for all other healthy feedersl Based on this investigation, a differential technique is proposed. A percentage restrain performance is proposed to ensure the selectivity and security of the algorithm. The transient algorithm is very sensitive for earth fault incidence. To apply the proposed algorithm, the residual currents can be measured easily by one sensor for each feeder with no need to voltage measurement. The proposed algorithm is less dependent on the fault resistance and the faulted feeder parameters. The network is simulated by ATP/EMTP program. Different fault conditions are covered in the simulation process: different fault inception angles, fault locations and fault resistances.
基金This work was supported by the National Key Research and Development Program of China(2021YFB2900600)the National Natural Science Foundation of China(61971041+2 种基金62001027)the Beijing Natural Science Foundation(M22001)the Technological Innovation Program of Beijing Institute of Technology(2022CX01027).
文摘By deploying the ubiquitous and reliable coverage of low Earth orbit(LEO)satellite networks using optical inter satel-lite link(OISL),computation offloading services can be provided for any users without proximal servers,while the resource limita-tion of both computation and storage on satellites is the impor-tant factor affecting the maximum task completion time.In this paper,we study a delay-optimal multi-satellite collaborative computation offloading scheme that allows satellites to actively migrate tasks among themselves by employing the high-speed OISLs,such that tasks with long queuing delay will be served as quickly as possible by utilizing idle computation resources in the neighborhood.To satisfy the delay requirement of delay-sensi-tive task,we first propose a deadline-aware task scheduling scheme in which a priority model is constructed to sort the order of tasks being served based on its deadline,and then a delay-optimal collaborative offloading scheme is derived such that the tasks which cannot be completed locally can be migrated to other idle satellites.Simulation results demonstrate the effective-ness of our multi-satellite collaborative computation offloading strategy in reducing task complement time and improving resource utilization of the LEO satellite network.
文摘An observation network focusing on earthquakes wascompleted one year aheadof schedule and put into operationrecently. According to scientists, this135-million-yuan (U.S.$16.3million) project could also be usedfor geodetic surveying, ionosphereand sea-level observations,
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2010AAxxx404)~~
文摘Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.
文摘The assay and recovery of rare earth elements (REEs) in the leaching process is being determined using expensive analytical methods: inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). A neural network model to predict the effects of operational variables on the lanthanum, cerium, yttrium, and neodymium recovery in the leaching of apatite concentrate is presented in this article. The effects of leaching time (10 to 40 min), pulp densities (30% to 50%), acid concentrations (20% to 60%), and agitation rates (100 to 200 r/min), were investigated and optimized on the recovery of REEs in the laboratory at a leaching temperature of 60℃. The obtained data in the laboratory optimization process were used for training and testing the neural network. The feed-forward artificial neural network with a 4-5-5-1 arrangement was capable of estimating the leaching recovery of REEs. The neural network predicted values were in good agreement with the experimental results. The correlations of R=l in training stages, and R=0.971, 0.952, 0.985, and 0.98 in testing stages were a result of Ce, Nd, La, and Y recovery prediction respectively, and these values were usually acceptable. It was shown that the proposed neural network model accurately reproduced all the effects of the operation variables, and could be used in the simulation of a leaching plant for REEs.
文摘In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth component content. The hybrid models were composed of the extraction equilibrium calculation model and the Radial Basis Function (RBF) Neural Network (NN) error compensation model; the parameters of compensation model were optimized by the hierarchical genetic algorithms (HGA). In addition, application experiment research of this proposed method was carried out in the rare earth separation production process of a corporation. The result shows that this method is effective and can realize online measurement for the component content of rare earth in the countercurrent extraction.
基金Funded by the National Natural Science Foundation of China(No.51171125)the China Postdoctoral Science Foundation (No.2012M520604)+1 种基金the Youth Foundation of Taiyuan University of Technology (No.2012L050)the Foundation for Talents Introduction of Taiyuan University of Technology
文摘A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN) approach is employed to predict the thickness values of the obtained chromizing coatings based on the OAD tests results. The results revealed that the built model was reliable, the thickness values of chromizing coatings were well predicted at selected process parameters, and the predicted error lied in rational range.
基金funded by the Excellent Postdoctoral Study Project Funding of Hebei Province,grant number B2019005006。
文摘Integrating Multi-access Edge Computing(MEC) in Low Earth Orbit(LEO) network is an important way to provide globally seamless low-delay service. In this paper, we consider the scenario that MEC platforms with computation and storage resource are deployed on LEO satellites, which is called "LEO-MEC". Service request dispatching decision is very important for resource utilization of the whole LEO-MEC system and Qo E of MEC users. Another important problem is service placement that is closely coupled with request dispatching. This paper models the joint service request dispatching and service placement problem as an optimization problem, which is a Mixed Integer Linear Programming(MILP). Our proposed mechanism solves this problem and uses the solved decision variables to dispatch requests and place services. Simulation results show that our proposed mechanism can achieve better performance in terms of ratio of served users and average hop count compared with baseline mechanism.
基金Supported by the National Natural Science Foundation of China (No.60372013).
文摘Low Earth Orbit (LEO) satellites provide short round-trip delays and are becoming in- creasingly important. One of the challenges in LEO satellite networks is the development of specialized and efficient routing algorithms. To satisfy the QoS requirements of multimedia applications, satellite routing protocols should consider handovers and minimize their effect on the active connections. A distributed QoS routing scheme based on heuristic ant algorithm is proposed for satisfying delay bound and avoiding link congestion. Simulation results show that the call blocking probabilities of this al- gorithm are less than that of Shortest Path First (SPF) with different delay bound.
文摘Complicated radio resource management,e.g.,handover condition,will trouble the user in non-terrestrial networks due to the impact of high mobility and hierarchical layouts which co-exist with terrestrial networks or various platforms at different altitudes.It is necessary to optimize the handover strategy to reduce the signaling overhead and im⁃prove the service continuity.In this paper,a new handover strategy is proposed based on the convolutional neural network.Firstly,the handover process is modeled as a directed graph.Suppose a user knows its future signal strength,then he/she can search for the best handover strategy based on the graph.Secondly,a convolutional neural network is used to extract the underlying regularity of the best handover strategies of different users,based on which any user can make near-optimal handover decisions according to its historical signal strength.Numerical simulation shows that the proposed handover strategy can effi⁃ciently reduce the handover number while ensuring the signal strength.
基金funded by“The Pearl River Talent Recruitment Program”of Guangdong Province in 2019(Grant No.2019CX01G338)the Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019).
文摘An accurate prediction of earth pressure balance(EPB)shield moving performance is important to ensure the safety tunnel excavation.A hybrid model is developed based on the particle swarm optimization(PSO)and gated recurrent unit(GRU)neural network.PSO is utilized to assign the optimal hyperparameters of GRU neural network.There are mainly four steps:data collection and processing,hybrid model establishment,model performance evaluation and correlation analysis.The developed model provides an alternative to tackle with time-series data of tunnel project.Apart from that,a novel framework about model application is performed to provide guidelines in practice.A tunnel project is utilized to evaluate the performance of proposed hybrid model.Results indicate that geological and construction variables are significant to the model performance.Correlation analysis shows that construction variables(main thrust and foam liquid volume)display the highest correlation with the cutterhead torque(CHT).This work provides a feasible and applicable alternative way to estimate the performance of shield tunneling.