This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the co...This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the control objective. The DF mapping refers to the fact that the system state and input of each robot can be derived algebraically from the flat outputs of the leaders and the cooperative errors and their finite order derivatives. Based on the proposed swarm DF mapping, a distributed controller is designed. The distributed implementation of swarm DF mapping is achieved through observer design. The effectiveness of the proposed method is validated through a numerical simulation of quadrotor swarm synchronization.展开更多
Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the im...Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.展开更多
A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced...A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced to design the internal model controller,and a desired closed-loop transfer function is designed to eliminate the unrealizable factors of the derived controller. In addition,set-point tracking and load-disturbance rejection of each process are separately controlled by two controllers. The simulation results show that in addition to high decoupling performance and robustness,the proposed control method also effectively improves loaddisturbance rejection and simultaneously optimizes the input tracking performance and disturbance rejection performance by selecting the parameters of controllers. Furthermore,the higher tolerance of model mismatch is achieved in this paper.展开更多
The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and...The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and analyzed by the developed finite element models of different typical roll contours configurations.A rather smooth local work roll contour near strip edges and an increase in rolled length can be obtained by application of long stroke work roll shifting system with conventional work roll contours that is incapable of the crown control.In comparison with the conventional backup and work roll contours configuration,the crown control range by the roll bending force enhances by 12.79% and the roll gap stiffness increases by 25.26% with the developed asymmetry self-compensating work rolls(ASR) and varying contact backup rolls(VCR).A better strip profile and flatness quality,an increase in coil numbers within the rolling campaign and a significant alleviated effect of severe work roll wear contours on performance of edge drop control are achieved by the application of ASR with crown control and wear control ability in downstream stand F5 and VCR in all stands of 1 700 mm hot strip mill.展开更多
To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm w...To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.展开更多
In this paper,the flatness control technology AnShaper^(TM) for cold-rolling mill and industry application are introduced.AnShaper^(TM) includes;partitioning piezomagnetic shape meter for flatness measurement for cold...In this paper,the flatness control technology AnShaper^(TM) for cold-rolling mill and industry application are introduced.AnShaper^(TM) includes;partitioning piezomagnetic shape meter for flatness measurement for cold-rolling strip;flatness measured signals processing system based on digital signal processing(DSP);flatness feedback control model system based on the control efficiency of flatness control actuators and model adaptive function.The application verifies that strip flatness can meet the need of high quality product by using AnShaperTM.The average flatness quality is about 5Ⅰ-unit and the 0.18 mm ultrathin thickness strip flatness is 10Ⅰ-unit.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos. 62373025, 12332004,62003013, and 11932003)。
文摘This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the control objective. The DF mapping refers to the fact that the system state and input of each robot can be derived algebraically from the flat outputs of the leaders and the cooperative errors and their finite order derivatives. Based on the proposed swarm DF mapping, a distributed controller is designed. The distributed implementation of swarm DF mapping is achieved through observer design. The effectiveness of the proposed method is validated through a numerical simulation of quadrotor swarm synchronization.
基金supported by National Natural Science Foundation of China(Grant No. 50675186)Hebei Provincial Major Natural Science Foundation of China (Grant No. E2006001038)
文摘Steel strips are the main of steel products and flatness is an important quality indicator of steel strips. Flatness control is the key and highly difficult technique of strip mills. The bottle-neck restricting the improvement of flatness control techniques is that the research on flatness theories and control mathematic models is not in accordance with the requirement of technique developments. To build a simple, rapid and accurate explicit formulation control model has become an urgent need for the development of flatness control technique. This paper puts forward the conception of dynamic effective matrix based on the effective matrix method for flatness control proposed by the authors under the consideration of the influence of the change of parameters in roiling processes on the effective matrix, and the concept is validated by industrial productions. Three methods of the effective matrix generation are induced: the calculation method based on the flatness prediction model; the calculation method based on the data excavation in rolling processes and the direct calculation method based on the network model. A fuzzy neural network effective matrix model is built based on the clusters, and then the network structure is optimized and the high-speed-calculation problem of the dynamic effective matrix is solved. The flatness control scheme for cold strip mills is proposed based on the dynamic effective matrix. On stand 5 of the 1 220 mm five-stand 4-high cold strip tandem mill, the industrial experiment with the control methods of tilting roll and bending roll is done by the control scheme of the static effective matrix and the dynamic effective matrix, respectively. The experiment result proves that the control effect of the dynamic effective matrix is much better than that of the static effective matrix. This paper proposes a new idea and method for the dynamic flatness control in the rolling processes of cold strip mills and develops the theory and model of the flatness control effective matrix method.
基金Sponsored by the Fundamental Research Funds for the Central Universities(Grant No.N110304008)the National Natural Science Foundation of China(Grant No.61374137)
文摘A modified two-degrees-of-freedom( M-TDOF) internal model control( IMC) method is proposed for non-square systems with multiple time delays and right-half-plane( RHP) zeros. In this method,pseudo-inverse is introduced to design the internal model controller,and a desired closed-loop transfer function is designed to eliminate the unrealizable factors of the derived controller. In addition,set-point tracking and load-disturbance rejection of each process are separately controlled by two controllers. The simulation results show that in addition to high decoupling performance and robustness,the proposed control method also effectively improves loaddisturbance rejection and simultaneously optimizes the input tracking performance and disturbance rejection performance by selecting the parameters of controllers. Furthermore,the higher tolerance of model mismatch is achieved in this paper.
基金Project(20040311890) supported by the Science and Technology Development Foundation of University of Science and Technology Beijing
文摘The roll contour pattern and variety of work and backup rolls in service and its effect on profile and flatness control performance in 1 700 mm hot strip mill at Wuhan Iron and Steel(Group) Corporation were tested and analyzed by the developed finite element models of different typical roll contours configurations.A rather smooth local work roll contour near strip edges and an increase in rolled length can be obtained by application of long stroke work roll shifting system with conventional work roll contours that is incapable of the crown control.In comparison with the conventional backup and work roll contours configuration,the crown control range by the roll bending force enhances by 12.79% and the roll gap stiffness increases by 25.26% with the developed asymmetry self-compensating work rolls(ASR) and varying contact backup rolls(VCR).A better strip profile and flatness quality,an increase in coil numbers within the rolling campaign and a significant alleviated effect of severe work roll wear contours on performance of edge drop control are achieved by the application of ASR with crown control and wear control ability in downstream stand F5 and VCR in all stands of 1 700 mm hot strip mill.
基金Project(50675186) supported by the National Natural Science Foundation of China
文摘To overcome the disadvantage that the standard least squares support vector regression(LS-SVR) algorithm is not suitable to multiple-input multiple-output(MIMO) system modelling directly,an improved LS-SVR algorithm which was defined as multi-output least squares support vector regression(MLSSVR) was put forward by adding samples' absolute errors in objective function and applied to flatness intelligent control.To solve the poor-precision problem of the control scheme based on effective matrix in flatness control,the predictive control was introduced into the control system and the effective matrix-predictive flatness control method was proposed by combining the merits of the two methods.Simulation experiment was conducted on 900HC reversible cold roll.The performance of effective matrix method and the effective matrix-predictive control method were compared,and the results demonstrate the validity of the effective matrix-predictive control method.
文摘In this paper,the flatness control technology AnShaper^(TM) for cold-rolling mill and industry application are introduced.AnShaper^(TM) includes;partitioning piezomagnetic shape meter for flatness measurement for cold-rolling strip;flatness measured signals processing system based on digital signal processing(DSP);flatness feedback control model system based on the control efficiency of flatness control actuators and model adaptive function.The application verifies that strip flatness can meet the need of high quality product by using AnShaperTM.The average flatness quality is about 5Ⅰ-unit and the 0.18 mm ultrathin thickness strip flatness is 10Ⅰ-unit.