Let {Xkl,…, Xkp, k≥ 1} be a p-dimensional standard (zero-means, unit-variances)non-stationary Gaussian vector sequence. In this work, the joint limit distribution of the maximaof {Xkl,…, Xkp, k 〉 1}, the incompl...Let {Xkl,…, Xkp, k≥ 1} be a p-dimensional standard (zero-means, unit-variances)non-stationary Gaussian vector sequence. In this work, the joint limit distribution of the maximaof {Xkl,…, Xkp, k 〉 1}, the incomplete maxima of those sequences subject to random failureand the partial sums of those sequences are obtained.展开更多
Let {Xi}i=1^∞ be a standardized stationary Gaussian sequence with covariance function τ(n) =EX1Xn+1, Sn =∑i=1^nXi,and X^-n=Sn/n.And let Nn be the point process formed by the exceedances of random level (x/√2 l...Let {Xi}i=1^∞ be a standardized stationary Gaussian sequence with covariance function τ(n) =EX1Xn+1, Sn =∑i=1^nXi,and X^-n=Sn/n.And let Nn be the point process formed by the exceedances of random level (x/√2 log n+√2 log n-log(4π log n)/2√log n) √1-τ(n) + X^-n by X1,X2,…, Xn. Under some mild conditions, Nn and Sn are asymptotically independent, and Nn converges weakly to a Poisson process on (0,1].展开更多
Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves t...Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves that on the almost sure central limit theory previously obtained by Marcin Dudzinski [1]. Our result reaches the optimal form.展开更多
In this paper,we study the asymptotic relation between the first crossing point and the last exit time for Gaussian order statistics which are generated by stationary weakly and strongly dependent Gaussian sequences.I...In this paper,we study the asymptotic relation between the first crossing point and the last exit time for Gaussian order statistics which are generated by stationary weakly and strongly dependent Gaussian sequences.It is shown that the first crossing point and the last exit time are asymptotically independent and dependent for weakly and strongly dependent cases,respectively.The asymptotic relations between the first crossing point and the last exit time for stationary weakly and strongly dependent Gaussian sequences are also obtained.展开更多
In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite samp...In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite sample discrete entropies are asymptotically close to their theoretical values.The confidence intervals of the sample Brown entropy are narrower than those of the sample discrete entropy calculated from its differential entropy, which is valid only in the case of a small sample size of WGN. The differences between sample Brown entropies and their theoretical values are fitted by two rational functions exactly, and the revised Brown entropies are more efficient. The application to the prediction of wind speed indicates that the variances of resampled time series increase almost exponentially with the increase of resampling period.展开更多
In this paper, we study the joint limit distributions of point processes of exceedances and partial sums of multivariate Gaussian sequences and show that the point processes and partial sums are asymptotically indepen...In this paper, we study the joint limit distributions of point processes of exceedances and partial sums of multivariate Gaussian sequences and show that the point processes and partial sums are asymptotically independent under some mild conditions. As a result, for a sequence of standardized stationary Gaussian vectors, we obtain that the point process of exceedances formed by the sequence (centered at the sample mean) converges in distribution to a Poisson process and it is asymptotically independent of the partial sums. The asymptotic joint limit distributions of order statistics and partial sums are also investigated under different conditions.展开更多
基金Supported by the National Natural Science Foundation of China(11326175,71471090)the Zhejiang Natural Science Foundation of China(LQ14A010012)
文摘Let {Xkl,…, Xkp, k≥ 1} be a p-dimensional standard (zero-means, unit-variances)non-stationary Gaussian vector sequence. In this work, the joint limit distribution of the maximaof {Xkl,…, Xkp, k 〉 1}, the incomplete maxima of those sequences subject to random failureand the partial sums of those sequences are obtained.
基金Supported by the Program for Excellent Talents in Chongqing Higher Education Institutions (120060-20600204)
文摘Let {Xi}i=1^∞ be a standardized stationary Gaussian sequence with covariance function τ(n) =EX1Xn+1, Sn =∑i=1^nXi,and X^-n=Sn/n.And let Nn be the point process formed by the exceedances of random level (x/√2 log n+√2 log n-log(4π log n)/2√log n) √1-τ(n) + X^-n by X1,X2,…, Xn. Under some mild conditions, Nn and Sn are asymptotically independent, and Nn converges weakly to a Poisson process on (0,1].
文摘Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves that on the almost sure central limit theory previously obtained by Marcin Dudzinski [1]. Our result reaches the optimal form.
基金Supported by the National Natural Science Foundation of China(11501250)Zhejiang Provincial Natural Science Foundation of China(LY18A010020)Innovation of Jiaxing City:a program to support the talented persons。
文摘In this paper,we study the asymptotic relation between the first crossing point and the last exit time for Gaussian order statistics which are generated by stationary weakly and strongly dependent Gaussian sequences.It is shown that the first crossing point and the last exit time are asymptotically independent and dependent for weakly and strongly dependent cases,respectively.The asymptotic relations between the first crossing point and the last exit time for stationary weakly and strongly dependent Gaussian sequences are also obtained.
文摘In order to find the convergence rate of finite sample discrete entropies of a white Gaussian noise(WGN), Brown entropy algorithm is numerically tested.With the increase of sample size, the curves of these finite sample discrete entropies are asymptotically close to their theoretical values.The confidence intervals of the sample Brown entropy are narrower than those of the sample discrete entropy calculated from its differential entropy, which is valid only in the case of a small sample size of WGN. The differences between sample Brown entropies and their theoretical values are fitted by two rational functions exactly, and the revised Brown entropies are more efficient. The application to the prediction of wind speed indicates that the variances of resampled time series increase almost exponentially with the increase of resampling period.
基金Supported by National Natural Science Foundation of China(Grant No.11171275)the Program for Excellent Talents in Chongqing Higher Education Institutions(Grant No.120060-20600204)supported by the Swiss National Science Foundation Project(Grant No.200021-134785)
文摘In this paper, we study the joint limit distributions of point processes of exceedances and partial sums of multivariate Gaussian sequences and show that the point processes and partial sums are asymptotically independent under some mild conditions. As a result, for a sequence of standardized stationary Gaussian vectors, we obtain that the point process of exceedances formed by the sequence (centered at the sample mean) converges in distribution to a Poisson process and it is asymptotically independent of the partial sums. The asymptotic joint limit distributions of order statistics and partial sums are also investigated under different conditions.