A kind of method of modal identification subject to ambient excitation is presented. A new synthesis stationary signal based on structural response wavelet transform and wavelet coefficient processes co-integration is...A kind of method of modal identification subject to ambient excitation is presented. A new synthesis stationary signal based on structural response wavelet transform and wavelet coefficient processes co-integration is obtained. The new signal instead of structural response is used in identifying the modal parameters of a non- stationary system, combined with the method of modal identification under stationary random excitation-the NExT method and the adjusted continuous least square method. The numerical results show that the method can eliminate the non-stationarity of structural response subject to non-stationary random excitation to a great extent, and is highly precise and robust.展开更多
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non...Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.展开更多
Based on the character of short-time non-stationary random signal, the relationship between the maximum decking charge and energy distribution of blasting vibration signals was investigated by means of the wavelet pac...Based on the character of short-time non-stationary random signal, the relationship between the maximum decking charge and energy distribution of blasting vibration signals was investigated by means of the wavelet packet method. Firstly, the characteristics of wavelet transform and wavelet packet analysis were described. Secondly, the blasting vibration signals were analyzed by wavelet packet based on software MATLAB, and the change of energy distribution curve at different frequency bands were obtained. Finally, the law of energy distribution of blasting vibration signals changing with the maximum decking charge was analyzed. The results show that with the increase of decking charge, the ratio of the energy of high frequency to total energy decreases, the dominant frequency hands of blasting vibration signals tend towards low frequency and hlasting vibration does not depend on the maximum decking charge.展开更多
基金The National Natural Science Foundation of China(No50278017)
文摘A kind of method of modal identification subject to ambient excitation is presented. A new synthesis stationary signal based on structural response wavelet transform and wavelet coefficient processes co-integration is obtained. The new signal instead of structural response is used in identifying the modal parameters of a non- stationary system, combined with the method of modal identification under stationary random excitation-the NExT method and the adjusted continuous least square method. The numerical results show that the method can eliminate the non-stationarity of structural response subject to non-stationary random excitation to a great extent, and is highly precise and robust.
基金Project(50490272) supported by the National Natural Science Foundation of China project(2004036430) supported bythe Postdoctoral Science Foundation of China
文摘Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.
基金Project(2002CB412703) supported by State Key Fundamental Research and Development Program of China project(50490272) supported by the National Natural Science Foundation of China
文摘Based on the character of short-time non-stationary random signal, the relationship between the maximum decking charge and energy distribution of blasting vibration signals was investigated by means of the wavelet packet method. Firstly, the characteristics of wavelet transform and wavelet packet analysis were described. Secondly, the blasting vibration signals were analyzed by wavelet packet based on software MATLAB, and the change of energy distribution curve at different frequency bands were obtained. Finally, the law of energy distribution of blasting vibration signals changing with the maximum decking charge was analyzed. The results show that with the increase of decking charge, the ratio of the energy of high frequency to total energy decreases, the dominant frequency hands of blasting vibration signals tend towards low frequency and hlasting vibration does not depend on the maximum decking charge.