A kind of method of modal identification subject to ambient excitation is presented. A new synthesis stationary signal based on structural response wavelet transform and wavelet coefficient processes co-integration is...A kind of method of modal identification subject to ambient excitation is presented. A new synthesis stationary signal based on structural response wavelet transform and wavelet coefficient processes co-integration is obtained. The new signal instead of structural response is used in identifying the modal parameters of a non- stationary system, combined with the method of modal identification under stationary random excitation-the NExT method and the adjusted continuous least square method. The numerical results show that the method can eliminate the non-stationarity of structural response subject to non-stationary random excitation to a great extent, and is highly precise and robust.展开更多
The road random torsional excitation is one type of torque rooted from the road roughness and vehicle drive system. This paper aims to study how the road random torsional excitation affects the dynamic characteristics...The road random torsional excitation is one type of torque rooted from the road roughness and vehicle drive system. This paper aims to study how the road random torsional excitation affects the dynamic characteristics of vehicle power train. The method of simulating the random torsional excitation of tracked vehicle is explored at first. Secondly,the road random torsional excitations under different road roughness,vehicle speeds and pre-tensions are obtained. Thirdly,the dynamic analysis model of tracked vehicle power train is constructed with the consideration of the road random torsional excitation. Eventually,the influences of this excitation on output torque,bearing support force,vibration acceleration and dynamic shear stress of transmission shafts are intensively studied.The research conclusions are helpful to correct and refine the present virtual prototype of tracked vehicle power train.展开更多
This paper developed 3D product models of motorcycle and engine by UGNX as well as virtual prototyping by ADAMS program with road roughness generated by MATLAB. Under the straight-line running condition, the dynamic r...This paper developed 3D product models of motorcycle and engine by UGNX as well as virtual prototyping by ADAMS program with road roughness generated by MATLAB. Under the straight-line running condition, the dynamic responses of motorcycle multibody system to both road and engine excitations were compared with those to only road excitation in terms of vertical acceleration response, amplitude frequency response and power spectral density. The comparisons of simulation data showed that the response due to flat road excitation was around 20 Hz, while that to the combined excitations was in a wide frequency band, of which the major components focused on 10 Hz, 15 Hz, 35 Hz ,70 Hz, 100 Hz and even higher frequencies, reflecting the characteristics of engine excitation based on its unbalanced inertia force and torque. It is concluded that the high fidelity virtual prototyping can simulate the dynamics of motorcycle product well in investigating the vibration and ride comfort performance.展开更多
This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driv...This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.展开更多
A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary ...A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary multi-point seismic ground motions at different locations on the ground surface are generated for use in engineering applications. First,a modified iterative procedure is used to generate uniformly modulated non-stationary ground motion time histories which are compatible with the prescribed power spectrum. Then,ground motion time histories are modeled as a non-stationary stochastic process with amplitude and frequency modulation. The characteristic frequency and damping ratio of the Clough-Penzien acceleration spectrum are considered as a function of time in order to study the frequency time variation. Finally,two numerical examples are presented to validate the efficiency of the proposed method,and the results show that this method can be effectively applied to the dynamic seismic analysis of long and large scale structures.展开更多
基金The National Natural Science Foundation of China(No50278017)
文摘A kind of method of modal identification subject to ambient excitation is presented. A new synthesis stationary signal based on structural response wavelet transform and wavelet coefficient processes co-integration is obtained. The new signal instead of structural response is used in identifying the modal parameters of a non- stationary system, combined with the method of modal identification under stationary random excitation-the NExT method and the adjusted continuous least square method. The numerical results show that the method can eliminate the non-stationarity of structural response subject to non-stationary random excitation to a great extent, and is highly precise and robust.
基金National Natural Science Foundations of China(Nos.51405410,51505402)
文摘The road random torsional excitation is one type of torque rooted from the road roughness and vehicle drive system. This paper aims to study how the road random torsional excitation affects the dynamic characteristics of vehicle power train. The method of simulating the random torsional excitation of tracked vehicle is explored at first. Secondly,the road random torsional excitations under different road roughness,vehicle speeds and pre-tensions are obtained. Thirdly,the dynamic analysis model of tracked vehicle power train is constructed with the consideration of the road random torsional excitation. Eventually,the influences of this excitation on output torque,bearing support force,vibration acceleration and dynamic shear stress of transmission shafts are intensively studied.The research conclusions are helpful to correct and refine the present virtual prototype of tracked vehicle power train.
基金Supported by National Natural Science Foundation of China (No. 51176138)
文摘This paper developed 3D product models of motorcycle and engine by UGNX as well as virtual prototyping by ADAMS program with road roughness generated by MATLAB. Under the straight-line running condition, the dynamic responses of motorcycle multibody system to both road and engine excitations were compared with those to only road excitation in terms of vertical acceleration response, amplitude frequency response and power spectral density. The comparisons of simulation data showed that the response due to flat road excitation was around 20 Hz, while that to the combined excitations was in a wide frequency band, of which the major components focused on 10 Hz, 15 Hz, 35 Hz ,70 Hz, 100 Hz and even higher frequencies, reflecting the characteristics of engine excitation based on its unbalanced inertia force and torque. It is concluded that the high fidelity virtual prototyping can simulate the dynamics of motorcycle product well in investigating the vibration and ride comfort performance.
基金the National Natural Science Foundation of China(Grant Numbers 52072157,52002156,52202471)Natural Science Foundation of Jiangsu Province(Grant Number BK20200911)+2 种基金Chongqing Key Laboratory of Urban Rail Transit System Integration and Control Open Fund(Grant Number CKLURVIOM_KFKT_2023001)Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant Number 2022ZB659)State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle,Hunan University(Grant Number 82315004).
文摘This paper addresses the impact of vertical vibration negative effects,unbalanced radial forces generated by the static eccentricity of the hub motor,and road excitation on the suspension performance of Hub Motor Driven Vehicle(HMDV).A dynamic inertial suspension based on Active Disturbance Rejection Control(ADRC)is proposed,combining the vertical dynamic characteristics of dynamic inertial suspension with the features of ADRC,which distinguishes between internal and external disturbances and arranges the transition process.Firstly,a simulation model of the static eccentricity of the hub motor is established to simulate the unbalanced radial electromagnetic force generated under static eccentricity.A quarter-vehicle model of an HMDV with a controllable dynamic inertial suspension is then constructed.Subsequently,the passive suspension model is studied under different grades of road excitation,and the impact mechanism of suspension performance at speeds of 0–20 m/s is analyzed.Next,the three main components within the ADRC controller are designed for the second-order controlled system,and optimization algorithms are used to optimize its internal parameters.Finally,the performance of the traditional passive suspension,the PID-based controllable dynamic inertial suspension,and the ADRC-based controllable dynamic inertial suspension are analyzed under different road inputs.Simulation results show that,under sinusoidal road input,the ADRC-based controllable dynamic inertial suspension exhibits a 52.3%reduction in the low-frequency resonance peak in the vehicle body acceleration gain diagram compared to the traditional passive suspension,with significant performance optimization in the high-frequency range.Under random road input,the ADRC-based controllable dynamic inertial suspension achieves a 29.53%reduction in the root mean square value of vehicle body acceleration and a 14.87%reduction in dynamic tire load.This indicates that the designed controllable dynamic inertial suspension possesses excellent vibration isolation performance.
基金National Natural Science Foundation of China Under Grant No.50439010NSFC and Korea Science and Engineering Foundation Under Grant No.50811140341
文摘A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary multi-point seismic ground motions at different locations on the ground surface are generated for use in engineering applications. First,a modified iterative procedure is used to generate uniformly modulated non-stationary ground motion time histories which are compatible with the prescribed power spectrum. Then,ground motion time histories are modeled as a non-stationary stochastic process with amplitude and frequency modulation. The characteristic frequency and damping ratio of the Clough-Penzien acceleration spectrum are considered as a function of time in order to study the frequency time variation. Finally,two numerical examples are presented to validate the efficiency of the proposed method,and the results show that this method can be effectively applied to the dynamic seismic analysis of long and large scale structures.