Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors,especially in developing countries.This study attempts to examine the spatial and temporal characteristics of drought a...Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors,especially in developing countries.This study attempts to examine the spatial and temporal characteristics of drought and its trends in the Koshi River Basin(KRB)in Nepal,using the standardized precipitation evapotranspiration index(SPEI)over the period from 1987 to 2017.The Mann-Kendall test was used to explore the trends of the SPEI values.The study illustrated the increasing annual and seasonal drought trends in the KRB over the study period.Spatially,the hill region of the KRB showed substantial increasing drought trends at the annual and seasonal scales,especially in summer and winter.The mountain region also showed a significant increasing drought trend in winter.The drought characteristic analysis indicated that the maximum duration,intensity,and severity of drought events were observed in the KRB after 2000.The Terai region presented the highest drought frequency and intensity,while the hill region presented the longest maximum drought duration.Moreover,the spatial extent of drought showed a significant increasing trend in the hill region at the monthly(drought station proportion of 7.6%/10 a in August),seasonal(drought station proportion of 7.2%/10 a in summer),and annual(drought station proportion of 6.7%/10 a)scales.The findings of this study can assist local governments,planners,and project implementers in understanding drought and developing appropriate mitigation strategies to cope with its impacts.展开更多
The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and pre...The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and precipitation—the two most important factors influencing drought—have not yet been thoroughly explored in this region.In this study,we first calculated the standard precipitation evapotranspiration index(SPEI)in Xinjiang from 1980 to 2020 based on the monthly precipitation and monthly average temperature.Then the spatiotemporal characteristics of temperature,precipitation,and drought in Xinjiang from 1980 to 2020 were analyzed using the Theil-Sen median trend analysis method and Mann-Kendall test.A series of SPEI-based scenario-setting experiments by combining the observed and detrended climatic factors were utilized to quantify the effects of individual climatic factor(i.e.,temperature and precipitation).The results revealed that both temperature and precipitation had experienced increasing trends at most meteorological stations in Xinjiang from 1980 to 2020,especially the spring temperature and winter precipitation.Due to the influence of temperature,trends of intensifying drought have been observed at spring,summer,autumn,and annual scales.In addition,the drought trends in southern Xinjiang were more notable than those in northern Xinjiang.From 1980 to 2020,temperature trends exacerbated drought trends,but precipitation trends alleviated drought trends in Xinjiang.Most meteorological stations in Xinjiang exhibited temperature-dominated drought trend except in winter;in winter,most stations exhibited precipitation-dominated wetting trend.The findings of this study highlight the importance of the impact of temperature on drought in Xinjiang and deepen the understanding of the factors influencing drought.展开更多
Drought is one of the most complex natural hazards affecting agriculture, water resources, natural ecosystems, and society. The negative societal consequences of drought include severe economic losses, famine, epidemi...Drought is one of the most complex natural hazards affecting agriculture, water resources, natural ecosystems, and society. The negative societal consequences of drought include severe economic losses, famine, epidemics, and land degradation. However, few studies have analyzed the complexity of drought characteristics, both at multiple time scales and with variations in evapotranspiration. In this study, drought occurrences were quantified using a new drought index, the Standardized Precipitation Evapotranspiration Index (SPEI), based on observed data of monthly mean temperature and precipitation from 1961 to 2013 in Henan province, central China. Based on the SPEI values of each weather station in the study the frequency and severity of meteorological droughts were computed, and the monthly, seasonal, and annual drought frequency and intensity over a 53-year period were analyzed. The spatial and temporal evolution, intensity, and the primary causes of drought occurrence in Henan were revealed. The results showed that the SPEI values effectively reflected the spa- tial and temporal pattern of drought occurrence. As the time scale decreased, the amplitude of the SPEI increased and droughts became more frequent. Since 1961, drought has oc- curred at the annual, seasonal, and monthly scales, and the occurrence of drought has in- creased. However, regional distribution has been uneven. The highest drought frequency, 35%, was observed in the Zhoukou region, while the lowest value, -26%, was measured in central and western Henan. The most severe droughts occurred in the spring and summer, followed by autumn. Annually, wide-ranging droughts occurred in 1966-1968, 1998-2000, and 2011-2013. The drought intensity showed higher values in north and west Henan, and lower values in its east and south. The maximum drought intensity value was recorded in Anyang, and the minimum occurred in Zhumadian, at 22.18% and 16.60%, respectively. The factors with the greatest influence on drought occurrence are increasing temperatures, the Eurasian atmospheric circulation patterns, and the El Nino effect.展开更多
植被物候直接影响其生物量,调控生态系统碳循环过程。目前,气候变化(尤其干旱)对中国中高纬度植被物候的影响依然不清楚。因此,文章基于GIMMS NDVI3g数据集,提取中国30°N以北地区中多种植被类型生长季的开始日期(Start of the Seas...植被物候直接影响其生物量,调控生态系统碳循环过程。目前,气候变化(尤其干旱)对中国中高纬度植被物候的影响依然不清楚。因此,文章基于GIMMS NDVI3g数据集,提取中国30°N以北地区中多种植被类型生长季的开始日期(Start of the Season,SOS)与结束日期(End of the Season,EOS)两物候参数。然后结合野外观测数据,验证提取物候参数结果可靠性,并结合饱和水汽压差(Vapor Pressure Deficit,VPD)与改进后的标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI)探究植被物候对干旱的响应特征规律。结果表明:(1)不同地区的植被物候变化呈现明显的差异性,单季植被与双季植被第1个生长季的SOS集中在每年的第30~180天,而双季植被第2个生长季的SOS集中在每年的第200~220天。单季植被与双季植被第1个生长季的EOS主要集中在每年的第180~300天,双季植被第2个生长季的EOS主要集中在每年的第260~300天。(2)森林季前VPD的上升导致植被的SOS提前及EOS延迟;草地季前VPD上升导致植被的SOS滞后以及EOS提前。(3)研究区内大部分地区的SPEI与植被的SOS、EOS均呈正相关,即干旱促使该地区植被的SOS、EOS提前。展开更多
基金funded by the CAS(Chinese Academy of Sciences)Overseas Institutions Platform Project(Grant No.131C11KYSB20200033)the NSFC-ICIMOD Joint Research Project(Grant No.41661144038)。
文摘Drought is an inevitable condition with negative impacts in the agricultural and climatic sectors,especially in developing countries.This study attempts to examine the spatial and temporal characteristics of drought and its trends in the Koshi River Basin(KRB)in Nepal,using the standardized precipitation evapotranspiration index(SPEI)over the period from 1987 to 2017.The Mann-Kendall test was used to explore the trends of the SPEI values.The study illustrated the increasing annual and seasonal drought trends in the KRB over the study period.Spatially,the hill region of the KRB showed substantial increasing drought trends at the annual and seasonal scales,especially in summer and winter.The mountain region also showed a significant increasing drought trend in winter.The drought characteristic analysis indicated that the maximum duration,intensity,and severity of drought events were observed in the KRB after 2000.The Terai region presented the highest drought frequency and intensity,while the hill region presented the longest maximum drought duration.Moreover,the spatial extent of drought showed a significant increasing trend in the hill region at the monthly(drought station proportion of 7.6%/10 a in August),seasonal(drought station proportion of 7.2%/10 a in summer),and annual(drought station proportion of 6.7%/10 a)scales.The findings of this study can assist local governments,planners,and project implementers in understanding drought and developing appropriate mitigation strategies to cope with its impacts.
文摘The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and precipitation—the two most important factors influencing drought—have not yet been thoroughly explored in this region.In this study,we first calculated the standard precipitation evapotranspiration index(SPEI)in Xinjiang from 1980 to 2020 based on the monthly precipitation and monthly average temperature.Then the spatiotemporal characteristics of temperature,precipitation,and drought in Xinjiang from 1980 to 2020 were analyzed using the Theil-Sen median trend analysis method and Mann-Kendall test.A series of SPEI-based scenario-setting experiments by combining the observed and detrended climatic factors were utilized to quantify the effects of individual climatic factor(i.e.,temperature and precipitation).The results revealed that both temperature and precipitation had experienced increasing trends at most meteorological stations in Xinjiang from 1980 to 2020,especially the spring temperature and winter precipitation.Due to the influence of temperature,trends of intensifying drought have been observed at spring,summer,autumn,and annual scales.In addition,the drought trends in southern Xinjiang were more notable than those in northern Xinjiang.From 1980 to 2020,temperature trends exacerbated drought trends,but precipitation trends alleviated drought trends in Xinjiang.Most meteorological stations in Xinjiang exhibited temperature-dominated drought trend except in winter;in winter,most stations exhibited precipitation-dominated wetting trend.The findings of this study highlight the importance of the impact of temperature on drought in Xinjiang and deepen the understanding of the factors influencing drought.
基金National Natural Science Foundation of China, No.41140019 No.41501263 The Key Program of Higher Education of Henan Province of China, No.15A180054
文摘Drought is one of the most complex natural hazards affecting agriculture, water resources, natural ecosystems, and society. The negative societal consequences of drought include severe economic losses, famine, epidemics, and land degradation. However, few studies have analyzed the complexity of drought characteristics, both at multiple time scales and with variations in evapotranspiration. In this study, drought occurrences were quantified using a new drought index, the Standardized Precipitation Evapotranspiration Index (SPEI), based on observed data of monthly mean temperature and precipitation from 1961 to 2013 in Henan province, central China. Based on the SPEI values of each weather station in the study the frequency and severity of meteorological droughts were computed, and the monthly, seasonal, and annual drought frequency and intensity over a 53-year period were analyzed. The spatial and temporal evolution, intensity, and the primary causes of drought occurrence in Henan were revealed. The results showed that the SPEI values effectively reflected the spa- tial and temporal pattern of drought occurrence. As the time scale decreased, the amplitude of the SPEI increased and droughts became more frequent. Since 1961, drought has oc- curred at the annual, seasonal, and monthly scales, and the occurrence of drought has in- creased. However, regional distribution has been uneven. The highest drought frequency, 35%, was observed in the Zhoukou region, while the lowest value, -26%, was measured in central and western Henan. The most severe droughts occurred in the spring and summer, followed by autumn. Annually, wide-ranging droughts occurred in 1966-1968, 1998-2000, and 2011-2013. The drought intensity showed higher values in north and west Henan, and lower values in its east and south. The maximum drought intensity value was recorded in Anyang, and the minimum occurred in Zhumadian, at 22.18% and 16.60%, respectively. The factors with the greatest influence on drought occurrence are increasing temperatures, the Eurasian atmospheric circulation patterns, and the El Nino effect.
文摘植被物候直接影响其生物量,调控生态系统碳循环过程。目前,气候变化(尤其干旱)对中国中高纬度植被物候的影响依然不清楚。因此,文章基于GIMMS NDVI3g数据集,提取中国30°N以北地区中多种植被类型生长季的开始日期(Start of the Season,SOS)与结束日期(End of the Season,EOS)两物候参数。然后结合野外观测数据,验证提取物候参数结果可靠性,并结合饱和水汽压差(Vapor Pressure Deficit,VPD)与改进后的标准化降水蒸散指数(Standardized Precipitation Evapotranspiration Index,SPEI)探究植被物候对干旱的响应特征规律。结果表明:(1)不同地区的植被物候变化呈现明显的差异性,单季植被与双季植被第1个生长季的SOS集中在每年的第30~180天,而双季植被第2个生长季的SOS集中在每年的第200~220天。单季植被与双季植被第1个生长季的EOS主要集中在每年的第180~300天,双季植被第2个生长季的EOS主要集中在每年的第260~300天。(2)森林季前VPD的上升导致植被的SOS提前及EOS延迟;草地季前VPD上升导致植被的SOS滞后以及EOS提前。(3)研究区内大部分地区的SPEI与植被的SOS、EOS均呈正相关,即干旱促使该地区植被的SOS、EOS提前。