CIGS thin films are deposited by sputtering and selenization, The synthesis of semiconducting polycrystalline thin films and characteristics of devices based on the CIGS absorbing layers are investigated. Their micros...CIGS thin films are deposited by sputtering and selenization, The synthesis of semiconducting polycrystalline thin films and characteristics of devices based on the CIGS absorbing layers are investigated. Their microstructures are characterized by x-ray diffraction and Raman spectroscopy, The results reveal that there exist metallic Cu2-xSe compounds in CIGS film surfaces and the compounds are thought to be responsible for the degradation of the open circuit voltage of solar cells. The optimization of selenization temperature profile and copper content in the precursor surfaces is studied, concluding that the conversion efficiency may be improved by removing metallic Cu2-xSe compounds from the surfaces of CIGS thin films.展开更多
Polycrystalline CuGaSe2 thin films on Mo-coated soda-lime glass substrates have been synthesized by coevaporation process from Cu, Ga and Se sources. Structural and electrical properties of the as-grown CuGaSe2 films ...Polycrystalline CuGaSe2 thin films on Mo-coated soda-lime glass substrates have been synthesized by coevaporation process from Cu, Ga and Se sources. Structural and electrical properties of the as-grown CuGaSe2 films strongly depend on the film composition. Stoichiometric CuGaSe2 is fabricated, as indicated by x-ray diffraction spectroscope (XRD) and x-ray fluorescence (XRF). A two-phase region is composed of CuGaSe2 and Cu2-xSe phases for Cu-rich films, and CuGaSe2 and CuGa3Se5 phases for Ga-rich films, respectively. Morphological properties are detected by scanning electron microscope (SEM) for various compositional films, the grain sizes of the CuGaSe2films decrease with the extent of deviation from stoichiometric composition. Raman spectroscopy of Cu-rich samples shows that there exist large Cu-Se particles on the film surface. The results from Hall effect measurements for typical samples indicate that CuGaSe2 films are always of p-type semiconductor from Cu-rich to Ga-rich. Stoichiometric CuGaSe2 films exhibit relatively large mobility than any other compositional films. Finally, polycrystalline CuGaSe2 thin film solar cell with a best conversion efficiency of 6.02% has been achieved under the standard air mass (AM)1.5 spectrum for 100mW/cm^2 at room temperature (aperture area, 0.24cm^2). The open circuit voltage of the CuGaSe2 solar cells is close to770 mV.展开更多
文摘CIGS thin films are deposited by sputtering and selenization, The synthesis of semiconducting polycrystalline thin films and characteristics of devices based on the CIGS absorbing layers are investigated. Their microstructures are characterized by x-ray diffraction and Raman spectroscopy, The results reveal that there exist metallic Cu2-xSe compounds in CIGS film surfaces and the compounds are thought to be responsible for the degradation of the open circuit voltage of solar cells. The optimization of selenization temperature profile and copper content in the precursor surfaces is studied, concluding that the conversion efficiency may be improved by removing metallic Cu2-xSe compounds from the surfaces of CIGS thin films.
基金Project supported by the National High Technology Joint Research Program of China (Grant No 2004AA513020)
文摘Polycrystalline CuGaSe2 thin films on Mo-coated soda-lime glass substrates have been synthesized by coevaporation process from Cu, Ga and Se sources. Structural and electrical properties of the as-grown CuGaSe2 films strongly depend on the film composition. Stoichiometric CuGaSe2 is fabricated, as indicated by x-ray diffraction spectroscope (XRD) and x-ray fluorescence (XRF). A two-phase region is composed of CuGaSe2 and Cu2-xSe phases for Cu-rich films, and CuGaSe2 and CuGa3Se5 phases for Ga-rich films, respectively. Morphological properties are detected by scanning electron microscope (SEM) for various compositional films, the grain sizes of the CuGaSe2films decrease with the extent of deviation from stoichiometric composition. Raman spectroscopy of Cu-rich samples shows that there exist large Cu-Se particles on the film surface. The results from Hall effect measurements for typical samples indicate that CuGaSe2 films are always of p-type semiconductor from Cu-rich to Ga-rich. Stoichiometric CuGaSe2 films exhibit relatively large mobility than any other compositional films. Finally, polycrystalline CuGaSe2 thin film solar cell with a best conversion efficiency of 6.02% has been achieved under the standard air mass (AM)1.5 spectrum for 100mW/cm^2 at room temperature (aperture area, 0.24cm^2). The open circuit voltage of the CuGaSe2 solar cells is close to770 mV.