This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double la...This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double layer conventional(DLC-),double layer mutually-coupled(DLMC),single layer conventional(SLC-),and single layer mutually-coupled(SLMC-),as well as fully-pitched(FP)winding configurations have been considered for both rectangular wave and sinewave excitations.Different conduction angles such as unipolar120°elec.,unipolar/bipolar180°elec.,bipolar240°elec.and bipolar360°elec.have been adopted and the most appropriate conduction angles have been obtained for the SRMs with different winding configurations.In addition,with appropriate conduction angles,the 12-slot/14-pole SRMs with modular stator structure is found to produce similar average torque,but lower torque ripple and iron loss when compared to non-modular 12-slot/8-pole SRMs.With sinewave excitation,the doubly salient synchronous reluctance machines with the DLMC winding can produce the highest average torque at high currents and achieve the highest peak efficiency as well.In order to compare with the conventional synchronous reluctance machines(SynRMs)having flux barriers inside the rotor,the appropriate rotor topologies to obtain the maximum average torque have been investigated for different winding configurations and slot/pole number combinations.Furthermore,some prototypes have been built with different winding configurations,stator structures,and slot/pole combinations to validate the predictions.展开更多
This paper aims to investigate the torque production mechanism and its improvement design in switched reluctance machines(SRMs) based on field modulation principle. Firstly, the analytical expressions of the air-gap m...This paper aims to investigate the torque production mechanism and its improvement design in switched reluctance machines(SRMs) based on field modulation principle. Firstly, the analytical expressions of the air-gap magnetic field are derived from the perspective of DC-and AC-components, respectively. Meanwhile, different slot/pole combinations and winding arrangements are considered. Secondly, the torque productions are analyzed and evaluated with emphasis on the interaction between the DCand AC-components of air-gap fields. Thirdly, the 12-slot/8-pole and 12-slot/10-pole SRMs are established and studied by using the finite-element method. The effects of slot/pole combination and winding arrangement on the average torque production are clarified. Then, two new designs to improve the average torque are proposed. Finally, the prototype of the 12-slot/10-pole SRM is manufactured, and the experiments are carried out for validation.展开更多
文摘This paper reviews the performances of some newly developed reluctance machines with different winding configurations,excitation methods,stator and rotor structures,and slot/pole number combinations.Both the double layer conventional(DLC-),double layer mutually-coupled(DLMC),single layer conventional(SLC-),and single layer mutually-coupled(SLMC-),as well as fully-pitched(FP)winding configurations have been considered for both rectangular wave and sinewave excitations.Different conduction angles such as unipolar120°elec.,unipolar/bipolar180°elec.,bipolar240°elec.and bipolar360°elec.have been adopted and the most appropriate conduction angles have been obtained for the SRMs with different winding configurations.In addition,with appropriate conduction angles,the 12-slot/14-pole SRMs with modular stator structure is found to produce similar average torque,but lower torque ripple and iron loss when compared to non-modular 12-slot/8-pole SRMs.With sinewave excitation,the doubly salient synchronous reluctance machines with the DLMC winding can produce the highest average torque at high currents and achieve the highest peak efficiency as well.In order to compare with the conventional synchronous reluctance machines(SynRMs)having flux barriers inside the rotor,the appropriate rotor topologies to obtain the maximum average torque have been investigated for different winding configurations and slot/pole number combinations.Furthermore,some prototypes have been built with different winding configurations,stator structures,and slot/pole combinations to validate the predictions.
基金supported by the National Natural Science Foundation of China(Grant No.52025073)the Postgraduate Research & Practice Innovation Program of Jiangsu Province(Grant No.KYCX21_3358)。
文摘This paper aims to investigate the torque production mechanism and its improvement design in switched reluctance machines(SRMs) based on field modulation principle. Firstly, the analytical expressions of the air-gap magnetic field are derived from the perspective of DC-and AC-components, respectively. Meanwhile, different slot/pole combinations and winding arrangements are considered. Secondly, the torque productions are analyzed and evaluated with emphasis on the interaction between the DCand AC-components of air-gap fields. Thirdly, the 12-slot/8-pole and 12-slot/10-pole SRMs are established and studied by using the finite-element method. The effects of slot/pole combination and winding arrangement on the average torque production are clarified. Then, two new designs to improve the average torque are proposed. Finally, the prototype of the 12-slot/10-pole SRM is manufactured, and the experiments are carried out for validation.