Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,it...Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.展开更多
Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be f...Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.展开更多
The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requ...The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requirements proposed by the project.Then,the vari-ation curve between the maximum bearing stress of the unit structure and the structural variables was obtained by simulation.Meanwhile,the mathematical equation between the maximum bearing stress and the structural variables could be obtained through MATLAB fitting.The results indicated that with the decrease in the number of cells,the compressive strength of the prepared column lattice increased(400 to 4 cells,compressive strength 29 MPa to 160 MPa).However,the yield strength increased with the number of cells.The compression strength of the simple cross-truss lattice samples indicated an increase trend with the decrease of the pillar size(an increase of the number of units),reaching 91 MPa(pillar diameter 0.52 mm,number of units 25).While the yield strength increased with the increasing of the number of units.In addition,the additive manufacturing processes of simple cubic lattice and simple cross-pillar lattice were investigated using selective laser melting.The compression performance obtained from the experiment is compared with the simulation results,which are in good agreement.The results of this paper can provide an important reference for optimizing design of lattice materials.展开更多
Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanica...Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM.展开更多
To accurately perform the coupled simulation of temperature field and stress field of complex parts and porous structures under the optimal manufacturing process parameters,three kinds of porous structures with differ...To accurately perform the coupled simulation of temperature field and stress field of complex parts and porous structures under the optimal manufacturing process parameters,three kinds of porous structures with different complexity were designed in this paper.Firstly,ANSYS additive software was used to conduct the stress/deformation simulation of the whole structure under different scanning strategies.Secondly,the optimal scanning strategy for different porous structures was determined,then the experimental preparation was performed,and mechanical properties of compression were tested and studied.The results show that the elastic modulus and yield strength increase with the increase of pole diameter/wall thickness.In addition,the quasi-static compression simulation of different structures was performed,and the compression performance was analyzed based on the experimental data.Finally,the stress concentration region of different structures was obtained.展开更多
An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. ...An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb-Dicke regime. Furthermore, these cold 171yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0-3P0 clock-transition spectrum of these 171yb atoms is obtained by measuring the dependence of the population of the ground-state 1 S0 upon the clock-laser detuning.展开更多
NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibi...NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future.展开更多
Experiments on trapping ytterbium atoms in various optical lattices are presented. After the two-stage cooling, first in a blue magneto-optical trap and then in a green magneto-optical trap, the ultracold 171 Yb atoms...Experiments on trapping ytterbium atoms in various optical lattices are presented. After the two-stage cooling, first in a blue magneto-optical trap and then in a green magneto-optical trap, the ultracold 171 Yb atoms are successfully loaded into one-, two-, and three-dimensional optical lattices operating at the Stark-free wavelength, respectively. The temperature, number, and lifetime of cold 171 Yb atoms in one-dimensional lattice are measured. After optimization, the one-dimensional lattice with cold 171Yb atoms is used for developing an ytterbium optical clock.展开更多
To increase the biocompatibility of hydroxyapatite (HA), Ca10(PO4)6(OH)2, the Sr substitution of Ca into the HA structure was effected to yield Ca10-xSrx(PO4)6(OH)2(Sr-HA). For medical and dental applications, it is i...To increase the biocompatibility of hydroxyapatite (HA), Ca10(PO4)6(OH)2, the Sr substitution of Ca into the HA structure was effected to yield Ca10-xSrx(PO4)6(OH)2(Sr-HA). For medical and dental applications, it is important that Sr-HA is prepared as a thin film so that the Sr fully substitutes the Ca sites in the HA structure and does not form segregated impurities consisting of Sr compounds. If the segregated Sr forms different amounts of different impurities, the dissolution of the Sr into the living body will not be reproducible across different samples. To confirm the Sr substitution into the Ca site in the HA structure, the systematic variation in the lattice constants of the Sr-HA with Sr content was evaluated as the first step. The a- and c-axis lengths were found to exhibit a linear relationship with the Sr content for six samples with different Sr contents, indicating that the prepared Sr-HA thin films likely possessed partial Sr substitution into the Ca sites of the HA structure. This result is an important first step in the accurate evaluation of the biological effects of Sr-HA thin films.展开更多
基金financially supported by the Liaoning Province Applied Fundamental Research Program(No.2023JH2/101700039)Liaoning Province Natural Science Foundation(No.2023-MSLH-328)。
文摘Lattice metamaterials based on three-period minimum surface(TPMS)are an effective means to achieve lightweight and high-strength materials which are widely used in various fields such as aerospace and ships.However,its vibration and noise reduction,and damping properties have not been fully studied.Therefore,in this study,the TPMS structures with parameterization were designed by the method of surface migration,and the TPMS structures with high forming quality was manufactured by laser powder bed fusion(LPBF).The mechanical properties and energy absorption characteristics of the beam and TPMS structures were studied and compared by quasi-static compression.The modal shapes of the beam lattice structures and TPMS structures were obtained by the free modal analysis,and the damping properties of two structures were obtained by modal tests.For the two structures after heat treatment with the same porosity of 70%,the yield strength of the beam lattice structure reaches 40.76 MPa,elastic modulus is 20.38 GPa,the energy absorption value is 32.23 MJ·m^(-3),the damping ratio is 0.52%.The yield strength,elastic modulus,energy absorption value,and damping ratio of the TPMS structure are 50.74 MPa,25.37 GPa,47.34 MJ·m^(-3),and 0.99%,respectively.The results show that TPMS structures exhibit more excellent mechanical properties and energy absorption,better damping performance,and obvious advantages in structural load and vibration and noise reduction compared with the beam lattice structures under the same porosity.
基金The authors are grateful for the support by National Key Research and Development Program of China(2021YFF0500300,2020YFB1708300)the National Natural Science Foundation of China(52205280,12172041).
文摘Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting fromthe sandwich effect.Such structures can be fabricated bymetallic additive manufacturing technique,such as selective laser melting(SLM).However,the maximum dimensions of actual structures are usually in a sub-meter scale,which results in restrictions on their appliance in aerospace and other fields.In this work,a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall.The designed structure is fabricated by SLM of AlSi10Mg and cold metal transfer welding technique.Quasi-static mechanical tests and vibration tests are both conducted to verify the mechanical strength of the designed large-scale lattice thin-walled structure.The experimental results indicate that themeter-scale thin-walled structure with lattice infill could meet the dimension and lightweight requirements of most spacecrafts.
基金supported by the National Natural Science Foundation of China(Grant No.52101058,51875541).
文摘The optimized design of simple cross-truss and column lattice structures was carried out by the SolidWorks simulation module.The effective density of the structure was calculated according to the weight reduction requirements proposed by the project.Then,the vari-ation curve between the maximum bearing stress of the unit structure and the structural variables was obtained by simulation.Meanwhile,the mathematical equation between the maximum bearing stress and the structural variables could be obtained through MATLAB fitting.The results indicated that with the decrease in the number of cells,the compressive strength of the prepared column lattice increased(400 to 4 cells,compressive strength 29 MPa to 160 MPa).However,the yield strength increased with the number of cells.The compression strength of the simple cross-truss lattice samples indicated an increase trend with the decrease of the pillar size(an increase of the number of units),reaching 91 MPa(pillar diameter 0.52 mm,number of units 25).While the yield strength increased with the increasing of the number of units.In addition,the additive manufacturing processes of simple cubic lattice and simple cross-pillar lattice were investigated using selective laser melting.The compression performance obtained from the experiment is compared with the simulation results,which are in good agreement.The results of this paper can provide an important reference for optimizing design of lattice materials.
基金supported by the financial support from the National Natural Science Foundation of China(Nos.51735005 and U1930207)the Basic Strengthening Program(No.2019-JCJQ-JJ-331)+1 种基金National Natural Science Founda-tion of China for Creative Research Groups(No.51921003)the 15th Batch of‘Six Talents Peaks’Innovative Talents Team Program(No.TD-GDZB-001).
文摘Laser additive manufacturing (AM) of lattice structures with light weight, excellent impact resistance, and energy absorption performance is receiving considerable attention in aerospace, transportation, and mechanical equipment application fields. In this study, we designed four gradient lattice structures (GLSs) using the topology optimization method, including the unidirectional GLS, the bi-directional increasing GLS, the bi-directional decreasing GLS and the none-GLS. All GLSs were manufactureed by laser powder bed fusion (LPBF). The uniaxial compression tests and finite element analysis were conducted to investigate the influence of gradient distribution features on deformation modes and energy absorption performance of GLSs. The results showed that, compared with the 45° shear fracture characteristic of the none-GLS, the unidirectional GLS, the bi-directional increasing GLS and the bi-directional decreasing GLS had the characteristics of the layer-by-layer fracture, showing considerably improved energy absorption capacity. The bi-directional increasing GLS showed a unique combination of shear fracture and layer-by-layer fracture, having the optimal energy absorption performance with energy absorption and specific energy absorption of 235.6 J and 9.5 J g-1 at 0.5 strain, respectively. Combined with the shape memory effect of NiTi alloy, multiple compression-heat recovery experiments were carried out to verify the shape memory function of LPBF-processed NiTi GLSs. These findings have potential value for the future design of GLSs and the realization of shape memory function of NiTi components through laser AM.
基金This paper was funded by the Key Project of Chinese National Programs for Fundamental Research and Development-Model Processing and Process Planning Software Project for Additive Manufacturing(2018YFB1105300)-Universal Full-dimension Digital Model Project(2018YFB1105301).
文摘To accurately perform the coupled simulation of temperature field and stress field of complex parts and porous structures under the optimal manufacturing process parameters,three kinds of porous structures with different complexity were designed in this paper.Firstly,ANSYS additive software was used to conduct the stress/deformation simulation of the whole structure under different scanning strategies.Secondly,the optimal scanning strategy for different porous structures was determined,then the experimental preparation was performed,and mechanical properties of compression were tested and studied.The results show that the elastic modulus and yield strength increase with the increase of pole diameter/wall thickness.In addition,the quasi-static compression simulation of different structures was performed,and the compression performance was analyzed based on the experimental data.Finally,the stress concentration region of different structures was obtained.
基金supported by the National Basic Research Program of China (Grant Nos. 2012CB821302 and 2010CB922903)the National Natural Science Foundation of China (Grant Nos. 11134003 and 10774044)the Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400)
文摘An optical atomic clock with 171yb atoms is devised and tested. By using a two-stage Doppler cooling technique, the 171Yb atoms are cooled down to a temperature of 6 ± 3 μK, which is close to the Doppler limit. Then, the cold 171Yb atoms are loaded into a one-dimensional optical lattice with a wavelength of 759 nm in the Lamb-Dicke regime. Furthermore, these cold 171yb atoms are excited from the ground-state 1S0 to the excited-state 3P0 by a clock laser with a wavelength of 578 nm. Finally, the 1S0-3P0 clock-transition spectrum of these 171yb atoms is obtained by measuring the dependence of the population of the ground-state 1 S0 upon the clock-laser detuning.
基金sponsored by the Natural and Science Foundation of China(Grant No.52275331)the Key-Area Research and Development Program of Guangdong Province(No.2020B090923001)+3 种基金the Key Research and Development Program of Hubei Province(No.2022BAA011)the Academic Frontier Youth Team(2018QYTD04)at Huazhong University of Science and Technology(HUST)the Hong Kong Scholars Program(No.XJ2022014)the Laboratory Project of Science and Technology on Power Beam Processes Laboratory。
文摘NiTi alloys have drawn significant attentions in biomedical and aerospace fields due to their unique shape memory effect(SME),superelasticity(SE),damping characteristics,high corrosion resistance,and good biocompatibility.Because of the unsatisfying processabilities and manufacturing requirements of complex NiTi components,additive manufacturing technology,especially laser powder bed fusion(LPBF),is appropriate for fabricating NiTi products.This paper comprehensively summarizes recent research on the NiTi alloys fabricated by LPBF,including printability,microstructural characteristics,phase transformation behaviors,lattice structures,and applications.Process parameters and microstructural features mainly influence the printability of LPBF-processed NiTi alloys.The phase transformation behaviors between austenite and martensite phases,phase transformation temperatures,and an overview of the influencing factors are summarized in this paper.This paper provides a comprehensive review of the mechanical properties with unique strain-stress responses,which comprise tensile mechanical properties,thermomechanical properties(e.g.critical stress to induce martensitic transformation,thermo-recoverable strain,and SE strain),damping properties and hardness.Moreover,several common structures(e.g.a negative Poisson’s ratio structure and a diamond-like structure)are considered,and the corresponding studies are summarized.It illustrates the various fields of application,including biological scaffolds,shock absorbers,and driving devices.In the end,the paper concludes with the main achievements from the recent studies and puts forward the limitations and development tendencies in the future.
基金Project supported by the National Key Basic Research and Development Program of China (Grant Nos.2012CB821302 and 2010CB922903)the National Natural Science Foundation of China (Grant Nos.11134003 and 10774044)the Shanghai Excellent Academic Leaders Program of China (Grant No.12XD1402400)
文摘Experiments on trapping ytterbium atoms in various optical lattices are presented. After the two-stage cooling, first in a blue magneto-optical trap and then in a green magneto-optical trap, the ultracold 171 Yb atoms are successfully loaded into one-, two-, and three-dimensional optical lattices operating at the Stark-free wavelength, respectively. The temperature, number, and lifetime of cold 171 Yb atoms in one-dimensional lattice are measured. After optimization, the one-dimensional lattice with cold 171Yb atoms is used for developing an ytterbium optical clock.
文摘To increase the biocompatibility of hydroxyapatite (HA), Ca10(PO4)6(OH)2, the Sr substitution of Ca into the HA structure was effected to yield Ca10-xSrx(PO4)6(OH)2(Sr-HA). For medical and dental applications, it is important that Sr-HA is prepared as a thin film so that the Sr fully substitutes the Ca sites in the HA structure and does not form segregated impurities consisting of Sr compounds. If the segregated Sr forms different amounts of different impurities, the dissolution of the Sr into the living body will not be reproducible across different samples. To confirm the Sr substitution into the Ca site in the HA structure, the systematic variation in the lattice constants of the Sr-HA with Sr content was evaluated as the first step. The a- and c-axis lengths were found to exhibit a linear relationship with the Sr content for six samples with different Sr contents, indicating that the prepared Sr-HA thin films likely possessed partial Sr substitution into the Ca sites of the HA structure. This result is an important first step in the accurate evaluation of the biological effects of Sr-HA thin films.