期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of light intensities and photoperiods on growth and proteolytic activity in purple non-sulfur marine bacterium, <i>Afifella marina</i>strain ME (KC205142) 被引量:6
1
作者 Sujjat Al-Azad Tan Kar Soon Julian Ransangan 《Advances in Bioscience and Biotechnology》 2013年第10期919-924,共6页
Afifella marina strain ME (KC205142), a purple non-sulfur bacterium was isolated from mangrove habitats of Sabah. The effects of light intensities and photoperiods on proteolytic activity in Afifella marina strain ME ... Afifella marina strain ME (KC205142), a purple non-sulfur bacterium was isolated from mangrove habitats of Sabah. The effects of light intensities and photoperiods on proteolytic activity in Afifella marina strain ME (KC205142) were investigated. Secretion of proteolytic enzymes in Afifella marina was preliminarily assessed by skim milk agarose media. Subsequently, light intensities, such as, dark, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500 and 5000 lux were used to evaluate the effects on proteolytic activity in Afifella marina strain ME under anaerobic condition. After that, the effect of photoperiods on proteolytic activity was monitored under anaerobic light condition (3000 lux) at 0 h (0L/24D), 6 h (6L/18D), 12 h (12L/12D), 18 h (18L/6D) and 24 h (24L/0D) of photoperiod. The highest proteolytic activity of 74.67 U was recorded at 3000 lux illumination light intensity. The proteolytic activity in bacterium Afifella marina strain ME was positively associated with the dry cell weight. The proteolytic activity of 72.67 U in bacterium Afifella marina strain ME at 18 h (18L/6D) photoperiod is not significantly different (p > 0.05) from proteolytic activity of 74.67 U recorded at continuous light (24L/0D) condition. Light intensity of 3000 lux, culture period of 48 h and a photoperiod of 18 h (18L/ 6D) were the optimum parameters for proteolytic activity in bacterium Afifella marina strain ME. 展开更多
关键词 Afifella MARINA LIGHT Intensity Photoperiod Proteolytic Activity PURPLE non-sulfur Bacteria
下载PDF
Mg^(2+) improves biomass production from soybean wastewater using purple non-sulfur bacteria 被引量:4
2
作者 Pan Wu Guangming Zhang Jianzheng Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第2期43-46,共4页
Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria(PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2+under the light-anaerobic ... Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria(PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg2+under the light-anaerobic condition. Results showed that with the optimal Mg2+dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L,and biomass yield also was improved by 60%. Chemical Oxygen Demand(COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg2+could promote the content of bacteriochlorophyll in photosynthesis because Mg2+is the bacteriochlorophyll active center, and thus improved adenosine triphosphate(ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials(biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg2+, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively. 展开更多
关键词 Purple non-sulfur bacteria Mg2+ Biomass resource Soybean wastewater PHOTOSYNTHESIS
原文传递
A highly selective dual-channel Hg^(2+) chemosensor based on an easy to prepare double naphthalene Schiff base 被引量:4
3
作者 ZHANG YouMing SHI BingBing +5 位作者 ZHANG Peng HUO JianQiang CHEN Pei LIN Qi LIU Jun WEI TaiBao 《Science China Chemistry》 SCIE EI CAS 2013年第5期612-618,共7页
A non-sulfur chemosensor based on an easy to prepare double naphthalene Schiff base is reported for the colorimetric and fluorometric dual-channel sensing of Hg2+ ions by taking advantage of the twisted intramolecular... A non-sulfur chemosensor based on an easy to prepare double naphthalene Schiff base is reported for the colorimetric and fluorometric dual-channel sensing of Hg2+ ions by taking advantage of the twisted intramolecular charge transfer (TICT) mechanism. This work provides a novel approach for the selective recognition of mercury ions. Moreover, this sensor serves as a potential recyclable component in sensing materials and the complex L-Hg2+ (L = 1-[(2-naphthalenylimino)methyl]-2-naphthalenol) can therefore be used as a fluorescent sensor for iodine anions. Notably, the color changes are very significant and all the recognition and recycling processes can be observed by the naked eye. 展开更多
关键词 non-sulfur mercury ions DUAL-CHANNEL Schiff base naked eye iodine anion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部