This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative ...This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .展开更多
The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive de...The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 30...For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).展开更多
We discuss two-stage iterative methods for the solution of linear systemAx = b, and give a new proof of the comparison theorems of two-stage iterative methodfor an Hermitian positive definite matrix. Meanwhile, we put...We discuss two-stage iterative methods for the solution of linear systemAx = b, and give a new proof of the comparison theorems of two-stage iterative methodfor an Hermitian positive definite matrix. Meanwhile, we put forward two new versionsof well known comparison theorem and apply them to some examples.展开更多
Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive de...Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.展开更多
The Hermitian positive definite solutions of the matrix equation X-A^*X^-2 A=I are studied. A theorem for existence of solutions is given for every complex matrix A. A solution in case A is normal is given. The basic...The Hermitian positive definite solutions of the matrix equation X-A^*X^-2 A=I are studied. A theorem for existence of solutions is given for every complex matrix A. A solution in case A is normal is given. The basic fixed point iterations for the equation are discussed in detail. Some convergence conditions of the basic fixed point iterations to approximate the solutions to the equation are given.展开更多
Based on the idea of maximum determinant positive definite matrix completion,Yamashita(Math Prog 115(1):1–30,2008)proposed a new sparse quasi-Newton update,called MCQN,for unconstrained optimization problems with spa...Based on the idea of maximum determinant positive definite matrix completion,Yamashita(Math Prog 115(1):1–30,2008)proposed a new sparse quasi-Newton update,called MCQN,for unconstrained optimization problems with sparse Hessian structures.In exchange of the relaxation of the secant equation,the MCQN update avoids solving difficult subproblems and overcomes the ill-conditioning of approximate Hessian matrices.However,local and superlinear convergence results were only established for the MCQN update with the DFP method.In this paper,we extend the convergence result to the MCQN update with the whole Broyden’s convex family.Numerical results are also reported,which suggest some efficient ways of choosing the parameter in the MCQN update the Broyden’s family.展开更多
In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iter...In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iterative methods are presented to compute the smallest and the quasi largest positive definite solutions,and the convergence analysis is also given.The theoretical results are illustrated by numerical examples.展开更多
In this paper,we find some mistakes in the paper “Several Inequalities of Matrix Traces” which was published in Chinese Quarterly Journal of Mathematics,Vol.10,No.2.
A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the...A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.展开更多
We establish the convergence theories of the symmetric relaxation methods for the system of linear equations with symmetric positive definite coefficient matrix, and more generally, those of the unsymmetric relaxation...We establish the convergence theories of the symmetric relaxation methods for the system of linear equations with symmetric positive definite coefficient matrix, and more generally, those of the unsymmetric relaxation methods for the system of linear equations with positive definite matrix.展开更多
In this paper, we further generalize the technique for constructing the normal (or pos- itive definite) and skew-Hermitian splitting iteration method for solving large sparse non- Hermitian positive definite system ...In this paper, we further generalize the technique for constructing the normal (or pos- itive definite) and skew-Hermitian splitting iteration method for solving large sparse non- Hermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove that the sequence produced by the PPS method con- verges unconditionally to the unique solution of the system. Moreover, we propose two kinds of typical practical choices of the PPS method and study the upper bound of the spectral radius of the iteration matrix. In addition, we show the optimal parameters such that the spectral radius achieves the minimum under certain conditions. Finally, some numerical examples are given to demonstrate the effectiveness of the considered methods.展开更多
The class of symmetric definitely positive matrices is extremely important in the matrix theory. At present, positive definiteness of a symmetric matrix can be shown by determining the signs of its all ordered princip...The class of symmetric definitely positive matrices is extremely important in the matrix theory. At present, positive definiteness of a symmetric matrix can be shown by determining the signs of its all ordered principal minors or the signs展开更多
The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions fo...The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.展开更多
A quasi positive definite matrix is the generalization of a positive definite matrix. A necessary and sufficient condition of quasi positive definite matrix is obtained in this paper for the Kronecker product and Ha...A quasi positive definite matrix is the generalization of a positive definite matrix. A necessary and sufficient condition of quasi positive definite matrix is obtained in this paper for the Kronecker product and Hadamard product of two quasi positive definite matrices, and Schur's achievements in Hadamard product of the positive definite matrix is generalized to quasi positive definite matrix theory.展开更多
文摘This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .
文摘The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
文摘For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).
文摘We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive definite Hermitian matrix.
基金This work is supported by NSF of Shanxi province,20011041.
文摘We discuss two-stage iterative methods for the solution of linear systemAx = b, and give a new proof of the comparison theorems of two-stage iterative methodfor an Hermitian positive definite matrix. Meanwhile, we put forward two new versionsof well known comparison theorem and apply them to some examples.
文摘Based on the fixed-point theory, we study the existence and the uniqueness of the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q, where Q is a square Hermitian positive definite matrix and A* is the conjugate transpose of the matrix A. We also demonstrate some essential properties and analyze the sensitivity of this solution. In addition, we derive computable error bounds about the approximations to the maximal Hermitian positive definite solution of the nonlinear matrix equation X+A^*X^-2A=Q. At last, we further generalize these results to the nonlinear matrix equation X+A^*X^-nA=Q, where n≥2 is a given positive integer.
文摘The Hermitian positive definite solutions of the matrix equation X-A^*X^-2 A=I are studied. A theorem for existence of solutions is given for every complex matrix A. A solution in case A is normal is given. The basic fixed point iterations for the equation are discussed in detail. Some convergence conditions of the basic fixed point iterations to approximate the solutions to the equation are given.
基金This work was supported by the Chinese NSF Grants(Nos.11331012 and 81173633)the China National Funds for Distinguished Young Scientists(No.11125107)+1 种基金the CAS Program for Cross&Coorperative Team of the Science&Technology InnovationThe authors are grateful to Professors Masao Fukushima and Ya-xiang Yuan for their warm encouragement and valuable suggestions.They also thank the two anonymous referees very much for their useful comments on an early version of this paper.
文摘Based on the idea of maximum determinant positive definite matrix completion,Yamashita(Math Prog 115(1):1–30,2008)proposed a new sparse quasi-Newton update,called MCQN,for unconstrained optimization problems with sparse Hessian structures.In exchange of the relaxation of the secant equation,the MCQN update avoids solving difficult subproblems and overcomes the ill-conditioning of approximate Hessian matrices.However,local and superlinear convergence results were only established for the MCQN update with the DFP method.In this paper,we extend the convergence result to the MCQN update with the whole Broyden’s convex family.Numerical results are also reported,which suggest some efficient ways of choosing the parameter in the MCQN update the Broyden’s family.
基金Foundation item: the Natural Science Foundation of Hunan Province (No. 09JJ6012).
文摘In this paper,Hermitian positive definite solutions of the nonlinear matrix equation X + A*X-qA = Q(q ≥ 1) are studied.Some new necessary and sufficient conditions for the existence of solutions are obtained.Two iterative methods are presented to compute the smallest and the quasi largest positive definite solutions,and the convergence analysis is also given.The theoretical results are illustrated by numerical examples.
文摘In this paper,we find some mistakes in the paper “Several Inequalities of Matrix Traces” which was published in Chinese Quarterly Journal of Mathematics,Vol.10,No.2.
基金Research supported by The China NNSF 0utstanding Young Scientist Foundation (No.10525102), The National Natural Science Foundation (No.10471146), and The National Basic Research Program (No.2005CB321702), P.R. China.
文摘A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.
文摘We establish the convergence theories of the symmetric relaxation methods for the system of linear equations with symmetric positive definite coefficient matrix, and more generally, those of the unsymmetric relaxation methods for the system of linear equations with positive definite matrix.
文摘In this paper, we further generalize the technique for constructing the normal (or pos- itive definite) and skew-Hermitian splitting iteration method for solving large sparse non- Hermitian positive definite system of linear equations. By introducing a new splitting, we establish a class of efficient iteration methods, called positive definite and semi-definite splitting (PPS) methods, and prove that the sequence produced by the PPS method con- verges unconditionally to the unique solution of the system. Moreover, we propose two kinds of typical practical choices of the PPS method and study the upper bound of the spectral radius of the iteration matrix. In addition, we show the optimal parameters such that the spectral radius achieves the minimum under certain conditions. Finally, some numerical examples are given to demonstrate the effectiveness of the considered methods.
基金Project supported by the National Natural Science Foundation of China.
文摘The class of symmetric definitely positive matrices is extremely important in the matrix theory. At present, positive definiteness of a symmetric matrix can be shown by determining the signs of its all ordered principal minors or the signs
文摘The symmetric,positive semidefinite,and positive definite real solutions of the matrix equation XA=YAD from an inverse problem of vibration theory are considered.When D=T the necessary and sufficient conditions for the existence of such solutions and their general forms are derived.
文摘A quasi positive definite matrix is the generalization of a positive definite matrix. A necessary and sufficient condition of quasi positive definite matrix is obtained in this paper for the Kronecker product and Hadamard product of two quasi positive definite matrices, and Schur's achievements in Hadamard product of the positive definite matrix is generalized to quasi positive definite matrix theory.