Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an effic...Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.展开更多
In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature...In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.展开更多
With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The networ...With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data.展开更多
Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machi...Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machine learning methods has recently been used for facilitating ERSI.This paper presents a new approach to improve ERSI by adopting support vector machines,which are proven to be effective tools in pattern classification and regression,on the basis of the spatial distribution of electromagnetic radiation sources.Spatial information is converted from 3D cubes to 1D vectors with subscripts as inputs in order to simplify the model.The model is trained with 187 500 data sets in order to enable it to identify the types of radiation source types with an accuracy of up to 99.9%.The influence of parameters(e.g.,penalty parameter,reflection and noise from the ambient environment,and the scaling method for the input data) are discussed.The proposed method has good performance in noisy and reverberant environment.It has an identification accuracy of 82.15% when the signal-to-noise ratio is 20 dB.The proposed method has better accuracy in a noisy environment than artificial neural networks.Given that each Electromagnetic(EM) source has unique spatial characteristics,this method can be used for EM source identification and EM interference diagnostics.展开更多
The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimina...The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20).展开更多
In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many ...In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many studies reported that some of these VMs hosted on the vehicles are overloaded,whereas others are underloaded.As a circumstance,the energy consumption of overloaded vehicles is drastically increased.On the other hand,underloaded vehicles are also drawing considerable energy in the underutilized situation.Therefore,minimizing the energy consumption of the VMs that are hosted by both overloaded and underloaded is a challenging issue in the VCC environment.The proper and efcient utilization of the vehicle’s resources can reduce energy consumption signicantly.One of the solutions is to improve the resource utilization of underloaded vehicles by migrating the over-utilized VMs of overloaded vehicles.On the other hand,a large number of VM migrations can lead to wastage of energy and time,which ultimately degrades the performance of the VMs.This paper addresses the issues mentioned above by introducing a resource management algorithm,called resource utilization-aware VM migration(RU-VMM)algorithm,to distribute the loads among the overloaded and underloaded vehicles,such that energy consumption is minimized.RU-VMM monitors the trend of resource utilization to select the source and destination vehicles within a predetermined threshold for the process of VM migration.It ensures that any vehicles’resource utilization should not exceed the threshold before or after the migration.RU-VMM also tries to avoid unnecessary VM migrations between the vehicles.RU-VMM is extensively simulated and tested using nine datasets.The results are carried out using three performance metrics,namely number of nal source vehicles(nfsv),percentage of successful VM migrations(psvmm)and percentage of dropped VM migrations(pdvmm),and compared with threshold-based algorithm(i.e.,threshold)and cumulative sum(CUSUM)algorithm.The comparisons show that the RU-VMM algorithm performs better than the existing algorithms.RU-VMM algorithm improves 16.91%than the CUSUM algorithm and 71.59%than the threshold algorithm in terms of nfsv,and 20.62%and 275.34%than the CUSUM and threshold algorithms in terms of psvmm.展开更多
Blind source separation is a signal processing method based on independent component analysis, its aim is to separate the source signals from a set of observations (output of sensors) by assuming the source signals in...Blind source separation is a signal processing method based on independent component analysis, its aim is to separate the source signals from a set of observations (output of sensors) by assuming the source signals independently. This paper reviews the general concept of BSS firstly;especially the theory for convolutive mixtures, the model of convolutive mixture and two deconvolution structures, then adopts a BSS algorithm for convolutive mixtures based on residual cross-talking error threshold control criteria, the simulation testing points out good performance for simulated mixtures.展开更多
The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor a...The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.展开更多
During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing deg...During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation.展开更多
Groundwater contamination source identification(GCSI)is a prerequisite for contamination risk evaluation and efficient groundwater contamination remediation programs.The boundary condition generally is set as known va...Groundwater contamination source identification(GCSI)is a prerequisite for contamination risk evaluation and efficient groundwater contamination remediation programs.The boundary condition generally is set as known variables in previous GCSI studies.However,in many practical cases,the boundary condition is complicated and cannot be estimated accurately in advance.Setting the boundary condition as known variables may seriously deviate from the actual situation and lead to distorted identification results.And the results of GCSI are affected by multiple factors,including contaminant source information,model parameters,boundary condition,etc.Therefore,if the boundary condition is not estimated accurately,other factors will also be estimated inaccurately.This study focuses on the unknown boundary condition and proposed to identify three types of unknown variables(contaminant source information,model parameters and boundary condition)innovatively.When simulation-optimization(S-O)method is applied to GCSI,the huge computational load is usually reduced by building surrogate models.However,when building surrogate models,the researchers need to select the models and optimize the hyperparameters to make the model powerful,which can be a lengthy process.The automated machine learning(AutoML)method was used to build surrogate model,which automates the model selection and hyperparameter optimization in machine learning engineering,largely reducing human operations and saving time.The accuracy of AutoML surrogate model is compared with the surrogate model used in eXtreme Gradient Boosting method(XGBoost),random forest method(RF),extra trees regressor method(ETR)and elasticnet method(EN)respectively,which are automatically selected in AutoML engineering.The results show that the surrogate model constructed by AutoML method has the best accuracy compared with the other four methods.This study provides reliable and strong support for GCSI.展开更多
In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firs...In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firstly,based on the theory of multi-resolution wavelet analysis,the wavelet power spectrum of noncooperative signal can be gotten. Secondly,according to the information entropy theory,the wavelet power spectrum entropy is defined in this paper. Therefore,the database of signal's wavelet power spectrum entropy can be built in different SNR and signal parameters. Finally,the sorting and identification model based on SVM is built for the individual identification of radiation source signal. The simulation result indicates that this method has a high individual's identification rate in low SNR,when the SNR is greater than 4 dB,the identification rate can reach 100%. Under unstable SNR conditions,when the range of SNR is between 0 dB and 24 dB,the average identification rate is more than 92. 67%. Therefore,this method has a great application value in the complex electromagnetic environment.展开更多
Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation...Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0705000)Leading-edge technology Program of Jiangsu Natural Science Foundation (Grant No.BK20192001)the National Natural Science Foundation of China (Grant No.11974178)。
文摘Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning(ML)technique for addressing different tasks.Based on ML technique,we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source.By properly modeling the target states,a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique,and hence our method reduces the resource consumption without loss of accuracy.We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data.Explicitly,the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states.Our method could be generalized to estimate other kinds of states,as well as other quantum information tasks.
基金The Natural Science Foundation of Heilongjiang Province ( No. F201018)the National Natural Science Foundation of China( No. 60901042)
文摘In order to solve the fatigue damage identification problem of helicopter moving components, a new approach for acoustic emission (AE) source type identification based on the harmonic wavelet packet (HWPT) feature extraction and the hierarchy support vector machine (H-SVM) classifier is proposed. After a four-level decomposition of the HWPT, the energy feature of AE signals in different frequency bands is extracted, which overcomes the shortcomings of the traditional wavelet packet including energy leakage, and inflexible frequency band selection and different frequency resolutions on different levels. The H-SVM classifier is trained with a subset of the experimental data for known AE source types and tested using the remaining set of data. The results of pressure-off experiments on the specimens of carbon fiber materials indicate that the proposed approach can effectively implement the AE source type identification, and has a better performance in terms of computational efficiency and identification accuracy than the wavelet packet (WPT) feature extraction.
基金This work was supported by the National Natural Science Foundation of China(U2133208,U20A20161).
文摘With the popularization of the Internet and the development of technology,cyber threats are increasing day by day.Threats such as malware,hacking,and data breaches have had a serious impact on cybersecurity.The network security environment in the era of big data presents the characteristics of large amounts of data,high diversity,and high real-time requirements.Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats.This paper proposes a machine-learning security defense algorithm based on metadata association features.Emphasize control over unauthorized users through privacy,integrity,and availability.The user model is established and the mapping between the user model and the metadata of the data source is generated.By analyzing the user model and its corresponding mapping relationship,the query of the user model can be decomposed into the query of various heterogeneous data sources,and the integration of heterogeneous data sources based on the metadata association characteristics can be realized.Define and classify customer information,automatically identify and perceive sensitive data,build a behavior audit and analysis platform,analyze user behavior trajectories,and complete the construction of a machine learning customer information security defense system.The experimental results show that when the data volume is 5×103 bit,the data storage integrity of the proposed method is 92%.The data accuracy is 98%,and the success rate of data intrusion is only 2.6%.It can be concluded that the data storage method in this paper is safe,the data accuracy is always at a high level,and the data disaster recovery performance is good.This method can effectively resist data intrusion and has high air traffic control security.It can not only detect all viruses in user data storage,but also realize integrated virus processing,and further optimize the security defense effect of user big data.
基金supported by the National Natural Science Foundation of China under Grant No.61201024
文摘Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machine learning methods has recently been used for facilitating ERSI.This paper presents a new approach to improve ERSI by adopting support vector machines,which are proven to be effective tools in pattern classification and regression,on the basis of the spatial distribution of electromagnetic radiation sources.Spatial information is converted from 3D cubes to 1D vectors with subscripts as inputs in order to simplify the model.The model is trained with 187 500 data sets in order to enable it to identify the types of radiation source types with an accuracy of up to 99.9%.The influence of parameters(e.g.,penalty parameter,reflection and noise from the ambient environment,and the scaling method for the input data) are discussed.The proposed method has good performance in noisy and reverberant environment.It has an identification accuracy of 82.15% when the signal-to-noise ratio is 20 dB.The proposed method has better accuracy in a noisy environment than artificial neural networks.Given that each Electromagnetic(EM) source has unique spatial characteristics,this method can be used for EM source identification and EM interference diagnostics.
基金L’Ore´al-UNESCO for the Women in Science Maghreb Program Grant Agreement No.4500410340.
文摘The discrimination of neutrons from gamma rays in a mixed radiation field is crucial in neutron detection tasks.Several approaches have been proposed to enhance the performance and accuracy of neutron-gamma discrimination.However,their performances are often associated with certain factors,such as experimental requirements and resulting mixed signals.The main purpose of this study is to achieve fast and accurate neutron-gamma discrimination without a priori information on the signal to be analyzed,as well as the experimental setup.Here,a novel method is proposed based on two concepts.The first method exploits the power of nonnegative tensor factorization(NTF)as a blind source separation method to extract the original components from the mixture signals recorded at the output of the stilbene scintillator detector.The second one is based on the principles of support vector machine(SVM)to identify and discriminate these components.In addition to these two main methods,we adopted the Mexican-hat function as a continuous wavelet transform to characterize the components extracted using the NTF model.The resulting scalograms are processed as colored images,which are segmented into two distinct classes using the Otsu thresholding method to extract the features of interest of the neutrons and gamma-ray components from the background noise.We subsequently used principal component analysis to select the most significant of these features wich are used in the training and testing datasets for SVM.Bias-variance analysis is used to optimize the SVM model by finding the optimal level of model complexity with the highest possible generalization performance.In this framework,the obtained results have verified a suitable bias–variance trade-off value.We achieved an operational SVM prediction model for neutron-gamma classification with a high true-positive rate.The accuracy and performance of the SVM based on the NTF was evaluated and validated by comparing it to the charge comparison method via figure of merit.The results indicate that the proposed approach has a superior discrimination quality(figure of merit of 2.20).
文摘In recent years,vehicular cloud computing(VCC)has gained vast attention for providing a variety of services by creating virtual machines(VMs).These VMs use the resources that are present in modern smart vehicles.Many studies reported that some of these VMs hosted on the vehicles are overloaded,whereas others are underloaded.As a circumstance,the energy consumption of overloaded vehicles is drastically increased.On the other hand,underloaded vehicles are also drawing considerable energy in the underutilized situation.Therefore,minimizing the energy consumption of the VMs that are hosted by both overloaded and underloaded is a challenging issue in the VCC environment.The proper and efcient utilization of the vehicle’s resources can reduce energy consumption signicantly.One of the solutions is to improve the resource utilization of underloaded vehicles by migrating the over-utilized VMs of overloaded vehicles.On the other hand,a large number of VM migrations can lead to wastage of energy and time,which ultimately degrades the performance of the VMs.This paper addresses the issues mentioned above by introducing a resource management algorithm,called resource utilization-aware VM migration(RU-VMM)algorithm,to distribute the loads among the overloaded and underloaded vehicles,such that energy consumption is minimized.RU-VMM monitors the trend of resource utilization to select the source and destination vehicles within a predetermined threshold for the process of VM migration.It ensures that any vehicles’resource utilization should not exceed the threshold before or after the migration.RU-VMM also tries to avoid unnecessary VM migrations between the vehicles.RU-VMM is extensively simulated and tested using nine datasets.The results are carried out using three performance metrics,namely number of nal source vehicles(nfsv),percentage of successful VM migrations(psvmm)and percentage of dropped VM migrations(pdvmm),and compared with threshold-based algorithm(i.e.,threshold)and cumulative sum(CUSUM)algorithm.The comparisons show that the RU-VMM algorithm performs better than the existing algorithms.RU-VMM algorithm improves 16.91%than the CUSUM algorithm and 71.59%than the threshold algorithm in terms of nfsv,and 20.62%and 275.34%than the CUSUM and threshold algorithms in terms of psvmm.
文摘Blind source separation is a signal processing method based on independent component analysis, its aim is to separate the source signals from a set of observations (output of sensors) by assuming the source signals independently. This paper reviews the general concept of BSS firstly;especially the theory for convolutive mixtures, the model of convolutive mixture and two deconvolution structures, then adopts a BSS algorithm for convolutive mixtures based on residual cross-talking error threshold control criteria, the simulation testing points out good performance for simulated mixtures.
基金supported in part by the Jiangsu Natural Science Foundation of China under Grant BK20180013in part by the Shenzhen Science and Technology Innovation Committee(STIC)under Grant JCYJ20180306174439784.
文摘The pulse-width-modulated(PWM)current-source converters(CSCs)fed electric machine systems can be considered as a type of high reliability energy conversion systems,since they work with the long-life DC-link inductor and offer high fault-tolerant capability for short-circuit faults.Besides,they provide motor friendly waveforms and four-quadrant operation ability.Therefore,they are suitable for high-power applications of fans,pumps,compressors and wind power generation.The purpose of this paper is to comprehensively review recent developments of key technologies on modulation and control of high-power(HP)PWM-CSC fed electric machines systems,including reduction of low-order current harmonics,suppression of inductor–capacitor(LC)resonance,mitigation of common-mode voltage(CMV)and control of modular PWM-CSC fed systems.In particular,recent work on the overlapping effects during commutation,LC resonance suppression under fault-tolerant operation and collaboration of modular PMW-CSCs are described.Both theoretical analysis and some results in simulations and experiments are presented.Finally,a brief discussion regarding the future trend of the HP CSC fed electric machines systems is presented.
文摘During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation.
基金supported by the National Natural Science Foundation of China (Grant Nos.42272283 and 41972252)the Graduate Innovation Fund of Jilin University (No.2022186).
文摘Groundwater contamination source identification(GCSI)is a prerequisite for contamination risk evaluation and efficient groundwater contamination remediation programs.The boundary condition generally is set as known variables in previous GCSI studies.However,in many practical cases,the boundary condition is complicated and cannot be estimated accurately in advance.Setting the boundary condition as known variables may seriously deviate from the actual situation and lead to distorted identification results.And the results of GCSI are affected by multiple factors,including contaminant source information,model parameters,boundary condition,etc.Therefore,if the boundary condition is not estimated accurately,other factors will also be estimated inaccurately.This study focuses on the unknown boundary condition and proposed to identify three types of unknown variables(contaminant source information,model parameters and boundary condition)innovatively.When simulation-optimization(S-O)method is applied to GCSI,the huge computational load is usually reduced by building surrogate models.However,when building surrogate models,the researchers need to select the models and optimize the hyperparameters to make the model powerful,which can be a lengthy process.The automated machine learning(AutoML)method was used to build surrogate model,which automates the model selection and hyperparameter optimization in machine learning engineering,largely reducing human operations and saving time.The accuracy of AutoML surrogate model is compared with the surrogate model used in eXtreme Gradient Boosting method(XGBoost),random forest method(RF),extra trees regressor method(ETR)and elasticnet method(EN)respectively,which are automatically selected in AutoML engineering.The results show that the surrogate model constructed by AutoML method has the best accuracy compared with the other four methods.This study provides reliable and strong support for GCSI.
基金Sponsored by the Nation Nature Science Foundation of China(Grant No.61201237,61301095)the Nature Science Foundation of Heilongjiang Province of China(Grant No.QC2012C069)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFZ1129,HEUCF130817,HEUCF130810)
文摘In this paper,according to the defect of methods which have low identification rate in low SNR,a new individual identification method of radiation source based on information entropy feature and SVM is presented. Firstly,based on the theory of multi-resolution wavelet analysis,the wavelet power spectrum of noncooperative signal can be gotten. Secondly,according to the information entropy theory,the wavelet power spectrum entropy is defined in this paper. Therefore,the database of signal's wavelet power spectrum entropy can be built in different SNR and signal parameters. Finally,the sorting and identification model based on SVM is built for the individual identification of radiation source signal. The simulation result indicates that this method has a high individual's identification rate in low SNR,when the SNR is greater than 4 dB,the identification rate can reach 100%. Under unstable SNR conditions,when the range of SNR is between 0 dB and 24 dB,the average identification rate is more than 92. 67%. Therefore,this method has a great application value in the complex electromagnetic environment.
文摘Speech recognition rate will deteriorate greatly in human-machine interaction when the speaker's speech mixes with a bystander's voice. This paper proposes a time-frequency approach for Blind Source Seperation (BSS) for intelligent Human-Machine Interaction(HMI). Main idea of the algorithm is to simultaneously diagonalize the correlation matrix of the pre-whitened signals at different time delays for every frequency bins in time-frequency domain. The prososed method has two merits: (1) fast convergence speed; (2) high signal to interference ratio of the separated signals. Numerical evaluations are used to compare the performance of the proposed algorithm with two other deconvolution algorithms. An efficient algorithm to resolve permutation ambiguity is also proposed in this paper. The algorithm proposed saves more than 10% of computational time with properly selected parameters and achieves good performances for both simulated convolutive mixtures and real room recorded speeches.