In order to indicate the performances of a large-scale communication network with domain partition and interconnection today, a kind of reliability index weighed by normalized capacity is defined. Based on the route r...In order to indicate the performances of a large-scale communication network with domain partition and interconnection today, a kind of reliability index weighed by normalized capacity is defined. Based on the route rules of network with domain partition and interconnection, the interconnection indexes among the nodes within the domain and among the domains are given from several aspects. It is expatiated on that the index can thoroughly represent the effect on the reliability index of the objective factor and the subjective measures of the designer, which obeys the route rules of a network with domain partition and interconnection. It is discussed that the defined index is rational and compatible with the traditional index.展开更多
Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the...Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the degrees of freedom are associated with the relevant subdomain. Therefore, it can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. This allows the algorithm to be implemented easily with low communication costs. Numerical results are given showing the high efficiency of the parallel algorithm.展开更多
This paper presents a partition-based Design-for- Test (DFT) technique to reduce the power consumption during scan-based testing. This method is based on partitioning the chip into several independent scan domains. ...This paper presents a partition-based Design-for- Test (DFT) technique to reduce the power consumption during scan-based testing. This method is based on partitioning the chip into several independent scan domains. By enabling the scan domains alternatively, only a fraction of the entire chip will be active at the same time, leading to low power consumption during test. Therefore, it will significantly reduce the possibility of Electronic Migration and Overheating. In order to prevent the drop of fault coverage, wrappers on the boundaries between scan domains are employed. This paper also presents a detailed design flow based on Electronics Design Automation (EDA) tools from Synopsy~ to implement the proposed test structure. The proposed DFT method is experimented on a state-of-theart System-ou-chips (SOC). The simulation results show a significant reduction in both average and peak power dissipation without sacrificing the fault coverage and test time. This SOC has been taped out in TSMC and finished the final test m ADVANTEST.展开更多
We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multi...We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multiscale levels. A remedy utilizing overlapping domain decompositions applied to the Boundary Element Method by means of wavelets is examined. The width of the overlapping of the subdomains plays an important role in the estimation of the eigenvalues as well as the condition number of the additive domain decomposition operator. We examine the convergence analysis of the domain decomposition method which depends on the wavelet levels and on the size of the subdomain overlaps. Our theoretical results related to the additive Schwarz method are corroborated by numerical outputs.展开更多
In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspac...In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspace correction. The basic train of thought is the introduction of the units function decomposition and reasonable distribution of the overlap of correction. The residual correction is conducted on each subspace while the computation is completely parallel. The theoretical analysis shows that this method is completely characterized by parallel.展开更多
Partition property plays a central role in domain decomposition methods. Existing theory essentially assumes certain ellipticity. We prove the partition property for prod lems without ellipticity which are of practica...Partition property plays a central role in domain decomposition methods. Existing theory essentially assumes certain ellipticity. We prove the partition property for prod lems without ellipticity which are of practical importance. Example applications include implicit schemes applied to degenerate parabolic partial differential equations arising from superconductors, superfluids and liquid crystals. With this partition property, Schwarz algorithms can be applied to general non-elliptic problems with an h-independent optimal convergence rate. Application to the time-dependent Ginzburg-Landau model of superconductivity is illustrated and numerical results are presented.展开更多
文摘In order to indicate the performances of a large-scale communication network with domain partition and interconnection today, a kind of reliability index weighed by normalized capacity is defined. Based on the route rules of network with domain partition and interconnection, the interconnection indexes among the nodes within the domain and among the domains are given from several aspects. It is expatiated on that the index can thoroughly represent the effect on the reliability index of the objective factor and the subjective measures of the designer, which obeys the route rules of a network with domain partition and interconnection. It is discussed that the defined index is rational and compatible with the traditional index.
基金Project supported by the National Natural Science Foundation of China (No.10971166)the National Basic Research Program (No.2005CB321703)the Science and Technology Foundation of Guizhou Province of China (No.[2008]2123)
文摘Based on the full domain partition, a parallel finite element algorithm for the stationary Stokes equations is proposed and analyzed. In this algorithm, each subproblem is defined in the entire domain. Majority of the degrees of freedom are associated with the relevant subdomain. Therefore, it can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. This allows the algorithm to be implemented easily with low communication costs. Numerical results are given showing the high efficiency of the parallel algorithm.
文摘This paper presents a partition-based Design-for- Test (DFT) technique to reduce the power consumption during scan-based testing. This method is based on partitioning the chip into several independent scan domains. By enabling the scan domains alternatively, only a fraction of the entire chip will be active at the same time, leading to low power consumption during test. Therefore, it will significantly reduce the possibility of Electronic Migration and Overheating. In order to prevent the drop of fault coverage, wrappers on the boundaries between scan domains are employed. This paper also presents a detailed design flow based on Electronics Design Automation (EDA) tools from Synopsy~ to implement the proposed test structure. The proposed DFT method is experimented on a state-of-theart System-ou-chips (SOC). The simulation results show a significant reduction in both average and peak power dissipation without sacrificing the fault coverage and test time. This SOC has been taped out in TSMC and finished the final test m ADVANTEST.
文摘We focus on the single layer formulation which provides an integral equation of the first kind that is very badly conditioned. The condition number of the unpreconditioned system increases exponentially with the multiscale levels. A remedy utilizing overlapping domain decompositions applied to the Boundary Element Method by means of wavelets is examined. The width of the overlapping of the subdomains plays an important role in the estimation of the eigenvalues as well as the condition number of the additive domain decomposition operator. We examine the convergence analysis of the domain decomposition method which depends on the wavelet levels and on the size of the subdomain overlaps. Our theoretical results related to the additive Schwarz method are corroborated by numerical outputs.
基金Supported by the School Youth Foundation Project Funding of Anqing Teacher’s College(KJ201108)
文摘In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspace correction. The basic train of thought is the introduction of the units function decomposition and reasonable distribution of the overlap of correction. The residual correction is conducted on each subspace while the computation is completely parallel. The theoretical analysis shows that this method is completely characterized by parallel.
基金This work was supported in part by Hong Kong RGC DAG93/94 SC10, Competitive Earmarked ResearchGrant HKUST593/94E and the speci
文摘Partition property plays a central role in domain decomposition methods. Existing theory essentially assumes certain ellipticity. We prove the partition property for prod lems without ellipticity which are of practical importance. Example applications include implicit schemes applied to degenerate parabolic partial differential equations arising from superconductors, superfluids and liquid crystals. With this partition property, Schwarz algorithms can be applied to general non-elliptic problems with an h-independent optimal convergence rate. Application to the time-dependent Ginzburg-Landau model of superconductivity is illustrated and numerical results are presented.