期刊文献+
共找到3,023篇文章
< 1 2 152 >
每页显示 20 50 100
On the evolution and formation of discharge morphology in pulsed dielectric barrier discharge
1
作者 陈星宇 李孟琦 +3 位作者 王威逸 张权治 彭涛 熊紫兰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期101-113,共13页
The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)conten... The discharge morphology of pulsed dielectric barrier discharge(PDBD) plays important roles in its applications. Here, we systematically investigated the effects of the voltage amplitude,discharge gap, and O_(2)content on the PDBD morphology, and revealed the possible underlying mechanism of the U-shaped formation. First, the morphological evolution under different conditions was recorded. A unique U-shaped region appears in the middle edge region when the gap is larger than 2 mm, while the entire discharge region remains columnar under a 2 mm gap in He PDBD. The width of the discharge and the U-shaped region increase with the increase in voltage, and decrease with the increase of the gap and O_(2)content. To explain this phenomenon,a two-dimensional symmetric model was developed to simulate the spatiotemporal evolution of different species and calculate the electric thrust. The discharge morphology evolution directly corresponds to the excited-state atomic reduction process. The electric thrust on the charged particles mainly determines the reaction region and strongly influences the U-shaped formation.When the gap is less than 2 mm, the electric thrust is homogeneous throughout the entire region,resulting in a columnar shape. However, when the gap is larger than 2 mm or O_(2)is added, the electric thrust in the edge region becomes greater than that in the middle, leading to the U-shaped formation. Furthermore, in He PDBD, the charged particles generating electric thrust are mainly electrons and helium ions, while in He/O_(2)PDBD those that generate electric thrust at the outer edge of the electrode surface are mainly various oxygen-containing ions. 展开更多
关键词 low-temperature plasma dielectric barrier discharge discharge morphology particle distribution electric thrust
下载PDF
Experimental and numerical investigation on the uniformity of nanosecond pulsed dielectric barrier discharge influenced by pulse parameters
2
作者 张东璇 余俊贤 +3 位作者 李梦遥 潘杰 刘峰 方志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第11期31-41,共11页
Nanosecond(ns)pulsed dielectric barrier discharge(DBD)is considered as a promising method to produce controllable large-volume and high activity low-temperature plasma at atmospheric pressure,which makes it suitable f... Nanosecond(ns)pulsed dielectric barrier discharge(DBD)is considered as a promising method to produce controllable large-volume and high activity low-temperature plasma at atmospheric pressure,which makes it suitable for wide applications.In this work,the ns pulse power supply is used to excite Ar DBD and the influences of the pulse parameters(voltage amplitude,pulse width,pulse rise and fall times)on the DBD uniformity are investigated.The gas gap voltage(Ug)and conduct current(Ig)are separated from the measured voltage and current waveforms to analyze the influence of electrical parameters.The spectral line intensity ratio of two Ar excited species is used as an indicator of the electron temperature(Te).The time resolved discharge processes are recorded by an intensified charge-coupled device camera and a one-dimensional fluid model is employed to simulate the spatial and temporal distributions of electrons,ions,metastable argon atoms and Te.Combining the experimental and numerical results,the mechanism of the pulse parameters influencing on the discharge uniformity is discussed.It is shown that the space electric field intensity and the space particles'densities are mainly responsible for the variation of discharge uniformity.With the increase of voltage and pulse width,the electric field intensity and the density of space particles increased,which results in the discharge mode transition from non-uniform to uniform,and then non-uniform.Furthermore,the extension of pulse rise and fall times leads to the discharge transition from uniform to nonuniform.The results are helpful to reveal the mechanism of ns pulsed DBD mode transition and to realize controllable and uniform plasma sources at atmospheric pressure. 展开更多
关键词 nanosecond pulse dielectric barrier discharge electrical characteristics active particle UNIFORMITY
下载PDF
Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method 被引量:3
3
作者 林茂用 曹中丞 +3 位作者 许春耀 邱蕙 黄鹏丞 林裕城 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期661-666,共6页
The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and... The optimization of micro milling electrical discharge machining(EDM) process parameters of Inconel 718 alloy to achieve multiple performance characteristics such as low electrode wear,high material removal rate and low working gap was investigated by the Grey-Taguchi method.The influences of peak current,pulse on-time,pulse off-time and spark gap on electrode wear(EW),material removal rate(MRR) and working gap(WG) in the micro milling electrical discharge machining of Inconel 718 were analyzed.The experimental results show that the electrode wear decreases from 5.6×10-9 to 5.2×10-9 mm3/min,the material removal rate increases from 0.47×10-8 to 1.68×10-8 mm3/min,and the working gap decreases from 1.27 to 1.19 μm under optimal micro milling electrical discharge machining process parameters.Hence,it is clearly shown that multiple performance characteristics can be improved by using the Grey-Taguchi method. 展开更多
关键词 Inconel 718 alloy micro milling electrical discharge machining electrode wear material removal rate working gap Grey-Taguchi method
下载PDF
Review on reactive species in water treatment using electrical discharge plasma:formation, measurement, mechanisms and mass transfer 被引量:10
4
作者 Yang CAO Guangzhou QU +2 位作者 Tengfei LI Nan JIANG Tiecheng WANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第10期6-22,共17页
In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the elec... In the electrical discharge plasma process, various chemical and physical processes can participate in the removal of contaminants. In this paper, the chemical and physical processes that occur as a result of the electrical discharge plasma are reviewed, and their possible roles in the degradation of contaminants are discussed. Measurement methods for the quantification of important reactive species and their advantages and shortcomings are presented. Approaches on how to enhance the diffusion of the reactive species in solution are examined. In addition, the formation of typical reactive species in different electrical discharge plasma is compared. 展开更多
关键词 advanced oxidation process electrical discharge plasma reactive species wastewater treatment
下载PDF
NOx Reduction and Desorption Studies Under Electric Discharge Plasma Using a Simulated Gas Mixture:A Case Study on the Effect of Corona Electrodes 被引量:7
5
作者 K.YOSHIDA B.S.RAJANIKANTH M.OKUBO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第3期327-333,共7页
In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility o... In this study, reduction and desorption of oxides of nitrogen (NOx) were conducted using an electrical discharge plasma technique. The study was carried out using a simulated gas mixture to explore the possibility of re-generation of used adsorbents by a nonthermal plasma desorption technique. Three different types of corona electrodes, namely, pipe, helical wire, and straight wire, were used for analyzing their effectiveness in NOx reduction/desorption. The pipe- type corona electrode exhibited a nitric oxide (NO) conversion of 50%, which is 1.5 times that of the straight-wire-type electrode at an energy density of 175 J/L. The helical-wire-type corona electrode exhibited a NOx desorption efficiency almost 4 times that of the pipe-type electrode, indicating the possibility that corona-generated species play a crucial role in desorption. 展开更多
关键词 NOx reduction nonthermal plasma electric discharge application NOx desorption
下载PDF
Surface Modification Process by Electrical Discharge Machining with Ti Powder Green Compact Electrode 被引量:4
6
作者 WANG Zhen-long 1, FANG Yu 1, WU Pei-nian 1, ZHAO Wan-sheng 1, CHENG Kai 2 (1. Dept. of Mechanical Engineering, Harbin Institute of Technology, Harbin 150001, China 2. School of Engineering, Leeds Metropolitan University, UK) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期6-,共1页
This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface wi... This paper describes a new method of surface modification by Electrical Discharge Machining (EDM). By using ordinary EDM machine tool and kerosene fluid, a hard ceramic layer can be created on the workpiece surface with Ti or other compressed powder electrode in a certain condition. This new revolutionary method is called Electrical Discharge Coating (EDC). The process of EDC begins with electrode wear during EDM,then a kind of hard carbide is created through the thermal and chemical reaction between the worn electrode material and the carbon particle decomposed from kerosene fluid under high temperature. The carbide is piled up on a workpiece quickly and becomes a hard layer of ceramic about 20 μm in several minutes. This paper studies the principle and process of EDC systemically by using Ti powder green compact electrode. In order to obtain a layer of compact ceramic film, it is very important to select proper electric pulse parameters, such as pulse width, pulse interval, peak current. Meantime, the electrode materials and its forming mode will effect the machining surface quality greatly. This paper presents a series of experiment results to study the EDC process by adopt different technology parameters. Experiments and analyses show that a compact TiC ceramic layer can be created on the surface of metal workpiece. The hardness of ceramic layer is more 3 times higher than the base body, and the hardness changes gradiently from surface to base body. The method will have a great future because many materials can be easily added to the electrode and then be coated on the workpiece surface. Gearing the parameters ceramic can be created with different thickness. The switch between deposition and removal process is carried out easily by changing the polarity, thus the gear to the thickness and shape of the composite ceramic layer is carried out easily. This kind of composite ceramic layer will be used to deal with the surface of the cutting tools or molds possibly, in order to lengthen their life. It also can be found wide application in the fields of surface repairing and strengthening of the ship or aircraft. 展开更多
关键词 electrical discharge Machining(EDM) electrical discharge Coating(EDC) Ti powder green compact electrode surface modification
下载PDF
Statistical Description of Debris Particle Size Distribution in Electrical Discharge Machining 被引量:4
7
作者 JIA Zhenyuan ZHENG Xinyi WANG Fuji LIU Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第1期67-72,共6页
Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove... Gap debris as discharge product is closely related to machining process in electrical discharge machining(EDM). A lot of recent researches have focused on the relationship among debris size, surfaces texture, remove rate, and machining stability. The study on statistical distribution of debris size contributes to the research, but it is still superficial currently. In order to obtain the distribution law of the debris particle size, laser particle size analyzer(LPSA) combined with scanning electron microscope(SEM) is used to analyze the EDM debris size. Firstly, the heating dried method is applied to obtain the debris particles. Secondly, the measuring range of LPSA is determined as 0.5–100 μm by SEM observation, and the frequency distribution histogram and the cumulative frequency distribution scattergram of debris size are obtained by using LPSA. Thirdly, according to the distribution characteristic of the frequency distribution histogram, the statistical distribution functions of lognormal, exponentially modified Gaussian(EMG), Gamma and Weibull are chosen to achieve curve fitting of the histogram. At last, the distribute law of the debris size is obtained by fitting results. Experiments with different discharge parameters are carried out on an EDM machine designed by the authors themselves, and the machining conditions are tool electrode of red-copper material, workpiece of ANSI 1045 material and working fluid of de-ionized water. The experimental results indicate that the debris sizes of all experiment sample truly obey the Weibull distribution. The obtained distribution law is significantly important for all the models established based on the debris particle size. 展开更多
关键词 electrical discharge machining DEBRIS particle measurement size distribution curve fitting
下载PDF
Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes 被引量:4
8
作者 S.D.KIM D.I.JANG +2 位作者 B.J.LIM S.B.LEE Y.S.MOK 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第7期659-665,共7页
Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reacti... Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, 02, and N2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O2. As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized. 展开更多
关键词 DEGRADATION dyeing wastewater pulsed electrical discharge dielectric barrierdischarge
下载PDF
Micro Electrical Discharge Machining Deposition in Air for Fabrication of Micro Spiral Structures 被引量:4
9
作者 PENG Zilong CHI Guanxin WANG Zhenlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第2期154-160,共7页
Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the m... Micro electrical discharge machining(EDM) deposition process is a new micro machining method for fabrication of metal micro structures. In this process, the high level of tool electrode wear is used to achieve the metal material deposition. Up to now, the studies of micro EDM deposition process focused mainly on the researches of deposition process, namely the effects of discharge parameters in deposition process on the deposition rate or deposition quality. The research of the formation of micro structures with different discharge energy density still lacks. With proper conditions and only by the z-axis feeding in vertical direction, a novel shape of micro spiral structure can be deposited, with 0.11 mm in wire diameter, 0.20 mm in outside diameter, and 3.78 mm in height. Then some new deposition strategies including angular deposition and against the gravity deposition were also successful. In order to find the forming mechanism of the spiral structures, the numerical simulation of the transient temperature distribution on the discharge point was conducted by using the finite-element method(FEM). The results show that there are two major factors lead to the forming of the spiral structures. One is the different material removal form of tool electrode according with the discharge energy density, the other is the influenced degree of the movement of the removed material particles in the discharge gap. The more the energy density in single discharge is, the smaller the mass of the removed material particles is, and the easier the movements of which will be changed to form an order tendency. The fine texture characteristics of the deposited micro spiral structures were analyzed by the energy spectrum analysis and the metallographic analysis. It shows that the components of the deposited material are almost the same as those of the tool electrode. Moreover the deposited material has the brass metallic luster in the longitudinal profile and has compact bonding with the base material. This research is useful to understand the micro-process of micro EDM deposition better and helpful to increase the controllability of the new EDM method for fabrication of micro structures. 展开更多
关键词 micro electrical discharge machining deposition micro spiral structure forming mechanism fine texture analysis
下载PDF
Friction and wear behaviors of TiCN coating based on electrical discharge coating
10
作者 曾招余波 肖厚群 +1 位作者 揭晓华 张艳梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3716-3722,共7页
Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction a... Titanium carbonitride (TiCN) coating was prepared on 45# carbon steel by electrical discharge coating (EDC), and the compositions, morphology and microstructure of the coating were studied. In addition, its friction and wear behaviors relative to the physical vapor deposition (PVD) TiN coating were investigated. The results show that the TiCN coating features a thickness of 15μm with a primary phase of TiC 0.3 N 0.7 . The wear rates of the two coatings have no clear distinction at low applied loads. However, severe abrasive wear appears in the PVD TiN coating when the applied load exceeds 30 N, while the TiCN coating features better wear resistance. The abrasive wear with coating peelings is found to be the predominant wear mechanism at high applied loads. 展开更多
关键词 electrical discharge coating titanium carbonitride mechanical properties friction and wear
下载PDF
Electric characteristic and cavitation bubble dynamics using underwater pulsed discharge 被引量:2
11
作者 Minglei SHAN Bingyan CHEN +3 位作者 Cheng YAO Qingbang HAN Changping ZHU Yu YANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第7期16-22,共7页
Underwater pulsed discharge is widely applied in medicine, machining, and material modification.The induced cavitation bubble and subsequent cavitation collapse are considered the major motivations behind these applic... Underwater pulsed discharge is widely applied in medicine, machining, and material modification.The induced cavitation bubble and subsequent cavitation collapse are considered the major motivations behind these applications. This paper presents an underwater pulsed discharge system.The experimental setup is established to induce and investigate the cavitation bubble assisted with a high-speed camera. Three aspects, including the characteristic of the discharge with different applied voltages and conductivities, the evolution of the cavitation bubble profile, and the energy efficiency of cavitation bubble inducing, are investigated, respectively. Especially, the mechanism of pre-discharge time delay in the low field intensity case is explained using the Joule heat effect.The results show the validity of the underwater pulsed discharger and experimental setup. The present underwater pulsed discharger is proved to be a simple, portable, and easy-to-implement device for the investigation of cavitation bubble dynamics. 展开更多
关键词 UNDERWATER pulsed discharge CAVITATION BUBBLE electric discharge CHARACTERISTIC high-speed camera
下载PDF
Improving energy utilization efficiency of electrical discharge milling in titanium alloys machining 被引量:3
12
作者 郭成波 韦东波 狄士春 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2550-2557,共8页
Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energ... Electrical discharge milling(ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency. 展开更多
关键词 electrical discharge milling electrode rotating dielectric flushing energy utilization efficiency material removal rate tool electrode wearing rate
下载PDF
Experimental Research on Effects of Process Parameters on Servo Scanning 3D Micro Electrical Discharge Machining 被引量:3
13
作者 TONG Hao LI Yong HU Manhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期114-121,共8页
Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the a... Servo scanning 3D micro electrical discharge machining (3D SSMEDM) is a novel and effective method in fabricating complex 3D micro structures with high aspect ratio on conducting materials. In 3D SSMEDM process, the axial wear of tool electrode can be compensated automatically by servo-keeping discharge gap, instead of the traditional methods that depend on experiential models or intermittent compensation. However, the effects of process parameters on 3D SSMEDM have not been reported up until now. In this study, the emphasis is laid on the effects of pulse duration, peak current, machining polarity, track style, track overlap, and scanning velocity on the 3D SSMEDM performances of machining efficiency, processing status, and surface accuracy. A series of experiments were carried out by machining a micro-rectangle cavity (900 μm×600 μm) on doped silicon. The experimental results were obtained as follows. Peak current plays a main role in machining efficiency and surface accuracy. Pulse duration affects obviously the stability of discharge state. The material removal rate of cathode processing is about 3/5 of that of anode processing. Compared with direction-parallel path, contour-parallel path is better in counteracting the lateral wear of tool electrode end. Scanning velocity should be selected moderately to avoid electric arc and short. Track overlap should be slightly less than the radius of tool electrode. In addition, a typical 3D micro structure of eye shape was machined based on the optimized process parameters. These results are beneficial to improve machining stability, accuracy, and efficiency in 3D SSMEDM. 展开更多
关键词 micro electrical discharge machining(micro EDM) servo scanning machining 3D micro-structure process parameter
下载PDF
Electric ignition energy evaluation and the energy distribution structure of energy released in electrostatic discharge process 被引量:2
14
作者 刘庆明 黄金香 +1 位作者 邵惠阁 张云明 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期310-315,共6页
Ignition energy is one of tbe important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electr... Ignition energy is one of tbe important parameters of flammable materials, and evaluating ignition energy precisely is essential to the safety of process industry and combustion science and technology. By using electric spark discharge test system, a series of electric spark discharge experiments were conducted with the capacitor-stored energy in the range of 10 J, 100 J, and 1000 J, respectively. The evaluation method for energy consumed by electric spark, wire, and switch during capacitor discharge process has been studied respectively. The resistance of wire, switch, and plasma between electrodes has been evaluated by different methods and an optimized evaluation method has been obtained. The electric energy consumed by wire, electric switch, and electric spark-induced plasma between electrodes were obtained and the energy structure of capacitor-released energy was analyzed. The dynamic process and the characteristic parameters (the maximum power, duration of discharge process) of electric spark discharge process have been analyzed. Experimental results showed that, electric spark-consumed energy only accounts for 8%-14% of the capacitor-released energy. With the increase of capacitor-released energy, the duration of discharge process becomes longer, and the energy of plasma accounts for more in the capacitor-released energy. The power of electric spark varies with time as a damped sinusoids function and the period and the maximum value increase with the capacitor-released energy. 展开更多
关键词 electric spark discharge characteristics energy structure ignition energy
下载PDF
Conversion of NO with a catalytic packedbed dielectric barrier discharge reactor 被引量:2
15
作者 Xu CAO Weixuan ZHAO +3 位作者 Renxi ZHANG Huiqi HOU Shanping CHEN Ruina ZHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第11期67-74,共8页
This paper discusses the conversion of nitric oxide(NO) with a low-temperature plasma induced by a catalytic packed-bed dielectric barrier discharge(DBD) reactor. Alumina oxide(Al2O3),glass(SiO2) and zirconium... This paper discusses the conversion of nitric oxide(NO) with a low-temperature plasma induced by a catalytic packed-bed dielectric barrier discharge(DBD) reactor. Alumina oxide(Al2O3),glass(SiO2) and zirconium oxide(ZrO2), three different spherical packed materials of the same size, were each present in the DBD reactor. The NO conversion under varying input voltage and specific energy density, and the effects of catalysts(titanium dioxide(TiO2) and manganese oxide(Mn Ox) coated on Al2O3) on NO conversion were investigated. The experimental results showed that NO conversion was greatly enhanced in the presence of packed materials in the reactor, and the catalytic packed bed of Mn Ox/Al2O3 showed better performance than that of TiO2/Al2O3. The surface and crystal structures of the materials and catalysts were characterized through scanning electron microscopy analysis. The final products were clearly observed by a Fourier transform infrared spectrometer and provided a better understanding of NO conversion. 展开更多
关键词 dielectric barrier discharge MATERIALS CATALYSTS NO electrical field
下载PDF
Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NO_x Removal in Raw Diesel Engine Exhaust 被引量:3
16
作者 Sankarsan MOHAPATRO B.S.RAJANIKANTH 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第1期82-87,共6页
Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to t... Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOx removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates. 展开更多
关键词 electric discharges NOx removal non-thermal plasma raw diesel engine exhaust
下载PDF
CUTTING REGULARITY AND DISCHARGE CHARACTERISTICS BY USING COMPOSITE COOLING LIQUID IN WIRE CUT ELECTRICAL DISCHARGE MACHINE WITH HIGH WIRE TRAVELING SPEED 被引量:11
17
作者 LIU Zhidong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期41-45,共5页
The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characte... The analysis of cutting regularity is provided through using and comparing two typical cooling liquids. It is proved that cutting regularity is greatly affected by cooling liquid's washing ability. Discharge characteristics and theoretic analysis between two electrodes are also discussed based on discharge waveform. By using composite cooling liquid which has strong washing ability, the efficiency in the first stable cutting phase has reached more than 200 mm^2/min, and the roughness of the surface has reached Ra〈0.8 μm after the fourth cutting with more than 50 mm^2/min average cutting efficiency. It is pointed out that cutting situation of the wire cut electrical discharge machine with high wire traveling speed (HSWEDM) is better than the wire cut electrical discharge machine with low wire traveling speed (LSWEDM) in the condition of improving the cooling liquid washing ability. The machining indices of HSWEDM will be increased remarkably by using the composite cooling liquid. 展开更多
关键词 Wire cut electrical discharge machine with high wire traveling speed Composite cooling liquid discharge characteristic Cutting regularity
下载PDF
Plasma-assisted methane conversion in an atmospheric pressure dielectric barrier discharge reactor 被引量:3
18
作者 Chao Xu Xin Tu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第3期420-425,共6页
In this paper, a cylindrical dielectric barrier discharge (DBD) reactor has been developed for the conversion of methane into hydrogen and other valuable chemicals. The effects of a wide range of processing paramete... In this paper, a cylindrical dielectric barrier discharge (DBD) reactor has been developed for the conversion of methane into hydrogen and other valuable chemicals. The effects of a wide range of processing parameters including discharge power, residence time and frequency on the performance of plasma methane conversion reaction have been investigated. The results show that the CH4 DBD could be characterized as a typical filamentary discharge with a microdis-charge zone in each half-cycle of the applied voltage. The conversion of CH4 reaches a maximum of 25.2% at a feed flow rate of 50 mL-min-1, a discharge power of 45 W and an excitation frequency of 20 kHz. It is found that the residence time of methane in the discharge zone has the most significant effect on both methane conversion and hydrogen yield, which are significantly higher at higher residence time. 展开更多
关键词 non-thermal plasma dielectric barrier discharge methane conversion hydrogen production
下载PDF
Machining performance on hybrid process of abrasive jet machining and electrical discharge machining 被引量:2
19
作者 Yan-cherng LIN Yuan-feng CHEN +1 位作者 A-cheng WANG Wan-lin SEI 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期775-780,共6页
To develop a hybrid process of abrasive jet machining (AJM) and electrical discharge machining (EDM),the effects of the hybrid process parameters on machining performance were comprehensively investigated to confirm t... To develop a hybrid process of abrasive jet machining (AJM) and electrical discharge machining (EDM),the effects of the hybrid process parameters on machining performance were comprehensively investigated to confirm the benefits of this hybrid process.The appropriate abrasives delivered by high speed gas media were incorporated with an EDM in gas system to construct the hybrid process of AJM and EDM,and then the high speed abrasives could impinge on the machined surface to remove the recast layer caused by EDM process to increase the efficiency of material removal and reduce the surface roughness.In this study,the benefits of the hybrid process were determined as the machining performance of hybrid process was compared with that of the EDM in gas system.The main process parameters were varied to explore their effects on material removal rate,surface roughness and surface integrities.The experimental results show that the hybrid process of AJM and EDM can enhance the machining efficiency and improve the surface quality.Consequently,the developed hybrid process can fit the requirements of modern manufacturing applications. 展开更多
关键词 hybrid process electrical discharge MACHINING ABRASIVE JET MACHINING EDM in gas surface ROUGHNESS
下载PDF
MICRO ELECTRICAL DISCHARGE MACHINING DEPOSITION IN AIR 被引量:6
20
作者 JIN Baidong ZHAO Wansheng WANG Zhenlong CAO Guohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第4期622-625,共4页
A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are... A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. With an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on micro EDD systematically and thoroughly. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval and working medium, are obtained, As a result, a micro cylinder with 0.19 mm in diameter and 7.35 mm in height is deposited. By exchanging the polarities of the electrode and workpiece the micro cylinder can be removed selectively. So the reversible machining of deposition and removal is achieved, which breaks through the constraint of traditional EDM. Measurements show that the deposited material is compact and close to workpiece base, whose components depend on the tool electrode, material. 展开更多
关键词 electrical discharge machining(EDlVD electrical discharge deposition(EDD) Reversible machining Processing pararneters
下载PDF
上一页 1 2 152 下一页 到第
使用帮助 返回顶部