The main objective of this research work was to diagnose the vulnerability of terrestrial ecosystems to S deposition in Atasta region in Campeche State, Mexico, comprising two simultaneous sampling programs in both, s...The main objective of this research work was to diagnose the vulnerability of terrestrial ecosystems to S deposition in Atasta region in Campeche State, Mexico, comprising two simultaneous sampling programs in both, soil and atmospheric deposition on an annual basis during three climatic periods: dry, rainy and cold fronts seasons. From the estimation of soil properties estimation (pH, texture, mineralogy, cationic exchange capacity, and basis saturation %), critical loads and sensitivity classes were assigned to sampled soils based according to the empirical methodology proposed by UNECE. During the dry season, 10 sites fell into sensitivity class 2 (moderately sensitive) and 3 (sensitive). On the other hand, during the rainy season, 8 sites showed a sensitivity class 1 (highly sensitive) and 2 sites presented a sensitivity class 2 (moderately sensitive);whereas along cold fronts season, 12 sites fell into sensitivity class 1 that corresponds to highly sensitive. Sensitivity classes showed a seasonal trend, with a higher sensitivity during rainy and cold fronts seasons;this agrees with the kind of sources influencing on the study area as a result of the prevailing meteorology during these climatic periods. Likewise, S concentration in atmospheric deposition was determined by turbidimetric method, and S deposition fluxes were estimated from surface area of the funnel opening of the sampling device and the sampling period. S deposition fluxes ranged from 0.29 and 14.06 kg S ha-1·yr-1;with a mean value of 8.57 kg S ha-1·yr-1. From the comparison between the current deposition rates and proposed critical loads, exceedances percentages were obtained (from 1.65% to 62.8%) and mapped to identify critical zones of S deposition in the studied area. It was established the important role which mangrove vegetation plays in the attenuation of the potential ecological effects on terrestrial ecosystems of the study area associated to atmospheric deposition.展开更多
Daily and annual average atmospheric environmental capacity coefficient(A-value) sequences for China's Mainland are calculated from hourly data recorded at 378 ground stations over 1975–2014. A-values at differen...Daily and annual average atmospheric environmental capacity coefficient(A-value) sequences for China's Mainland are calculated from hourly data recorded at 378 ground stations over 1975–2014. A-values at different recurrence intervals are calculated by fitting the sequences to Pearson type III distribution curves. Based on these A-values and source-sink balance(reference concentration 100 μg m^(-3)), atmospheric environmental capacities at the recurrence intervals are calculated for all of China's Mainland and each provincial administrative region. The climate average atmospheric environmental capacity reference value for the entire mainland is 2.169×10~7 t yr^(-1). An urban atmospheric load index is defined for analyses of the impact of population density on the urban atmospheric environment. Analyses suggest that this index is also useful for differentiating whether air quality changes are attributable to varying meteorological conditions or variations of artificial emission rate.Equations guiding the control of unorganized emission sources are derived for preventing air quality deterioration during urban expansion and population concentration.展开更多
Mechanical energy input to the oceans is one of the most important factors controlling the oceanic general circulation. The atmosphere trans- ports mechanical energy to the oceans primarily through wind stress, plus c...Mechanical energy input to the oceans is one of the most important factors controlling the oceanic general circulation. The atmosphere trans- ports mechanical energy to the oceans primarily through wind stress, plus changes of the sea level pressure (the so-called atmospheric loading). The rate of mechanical energy transfer into the ocean due to atmospheric loading is calculated, based on TOPEX/POSEIDON data over ten-year period (1993 -2002). The rate of total energy input for the world oceans is estimated at 0.04TW (1TW=1012Watt), and most of this energy input is concentrated in the Southern Oceans and the Storm Tracks in the Northern Hemisphere. This energy input varied greatly with time, and the amplitude of the interannual variability over the past ten years is about 15%.展开更多
文摘The main objective of this research work was to diagnose the vulnerability of terrestrial ecosystems to S deposition in Atasta region in Campeche State, Mexico, comprising two simultaneous sampling programs in both, soil and atmospheric deposition on an annual basis during three climatic periods: dry, rainy and cold fronts seasons. From the estimation of soil properties estimation (pH, texture, mineralogy, cationic exchange capacity, and basis saturation %), critical loads and sensitivity classes were assigned to sampled soils based according to the empirical methodology proposed by UNECE. During the dry season, 10 sites fell into sensitivity class 2 (moderately sensitive) and 3 (sensitive). On the other hand, during the rainy season, 8 sites showed a sensitivity class 1 (highly sensitive) and 2 sites presented a sensitivity class 2 (moderately sensitive);whereas along cold fronts season, 12 sites fell into sensitivity class 1 that corresponds to highly sensitive. Sensitivity classes showed a seasonal trend, with a higher sensitivity during rainy and cold fronts seasons;this agrees with the kind of sources influencing on the study area as a result of the prevailing meteorology during these climatic periods. Likewise, S concentration in atmospheric deposition was determined by turbidimetric method, and S deposition fluxes were estimated from surface area of the funnel opening of the sampling device and the sampling period. S deposition fluxes ranged from 0.29 and 14.06 kg S ha-1·yr-1;with a mean value of 8.57 kg S ha-1·yr-1. From the comparison between the current deposition rates and proposed critical loads, exceedances percentages were obtained (from 1.65% to 62.8%) and mapped to identify critical zones of S deposition in the studied area. It was established the important role which mangrove vegetation plays in the attenuation of the potential ecological effects on terrestrial ecosystems of the study area associated to atmospheric deposition.
基金supported by the National Natural Science Foundation of China (Grant No. 41405136)
文摘Daily and annual average atmospheric environmental capacity coefficient(A-value) sequences for China's Mainland are calculated from hourly data recorded at 378 ground stations over 1975–2014. A-values at different recurrence intervals are calculated by fitting the sequences to Pearson type III distribution curves. Based on these A-values and source-sink balance(reference concentration 100 μg m^(-3)), atmospheric environmental capacities at the recurrence intervals are calculated for all of China's Mainland and each provincial administrative region. The climate average atmospheric environmental capacity reference value for the entire mainland is 2.169×10~7 t yr^(-1). An urban atmospheric load index is defined for analyses of the impact of population density on the urban atmospheric environment. Analyses suggest that this index is also useful for differentiating whether air quality changes are attributable to varying meteorological conditions or variations of artificial emission rate.Equations guiding the control of unorganized emission sources are derived for preventing air quality deterioration during urban expansion and population concentration.
基金This work was supported by the National Natural Science Foundation of China (Grant No.40476010)Research Fund for the Doctoral Program of Higher Education (Grant No.20030423011)the National Aero-Space Administration through Contract No. 1229833 (NRA-00-0ES-05).
文摘Mechanical energy input to the oceans is one of the most important factors controlling the oceanic general circulation. The atmosphere trans- ports mechanical energy to the oceans primarily through wind stress, plus changes of the sea level pressure (the so-called atmospheric loading). The rate of mechanical energy transfer into the ocean due to atmospheric loading is calculated, based on TOPEX/POSEIDON data over ten-year period (1993 -2002). The rate of total energy input for the world oceans is estimated at 0.04TW (1TW=1012Watt), and most of this energy input is concentrated in the Southern Oceans and the Storm Tracks in the Northern Hemisphere. This energy input varied greatly with time, and the amplitude of the interannual variability over the past ten years is about 15%.