Ten kinds of organic depressants were used to investigate the depressing performance on marmatite and pyrite.Flotation results show that the organic compounds only with single group of hydroxyl(-OH),carboxyl(-COOH) or...Ten kinds of organic depressants were used to investigate the depressing performance on marmatite and pyrite.Flotation results show that the organic compounds only with single group of hydroxyl(-OH),carboxyl(-COOH) or amino(-NH2) in molecule are ineffective in depressing marmatite,jamesonite and pyrite.The combinations of these functional groups still cannot enhance the depressing ability of organic depressant.The thioglycollic acid containing reductive functional group(-SH) has a good depressing performance for marmatite and pyrite.The presence of benzene ring in molecule can enhance the depressing performance.The functional group electronegativity,hydrophilic-hydrophobic indexes and frontier orbital of organic depressants were calculated,and the criterion for the depressing effect of organic depressants to sulphide minerals was proposed.展开更多
In this paper, the separation of arsenopyrite from chalcopyrite, pyrite, galena with organic depressants (guergum and sodium humic ) was discussed, and the functioning mechanism of those organic depressants was disc...In this paper, the separation of arsenopyrite from chalcopyrite, pyrite, galena with organic depressants (guergum and sodium humic ) was discussed, and the functioning mechanism of those organic depressants was discussed. The experimental results of monomineral flotation indicated that both guergum and sodium humic have depressing effect on arsenopyrite in the presence of ethyl xanthate. Guergum and sodium humic showed different depressing ability to pyrite, chalcopyrite and galena, and the higher the pH value in pulp, the stronger the depressing ability. Ultraviolet-Visible Spectrophotometric study showed that the adsorption layer of xanthate on surface of minerals had been desorhed by the two organic depressants, and the selective desorption of the collector layer was found from different minerals. The xanthate cover on minerals surface was set free when dosage of the organic depressants was high enough. For artificially-mixed minerals, the separation of arsenopyrite from other sulphides was successfully realized by controlling dosage of the organic depressants. And sodium humic had been concentrates in a commercial Lead-Zinc concentrator.展开更多
The geochemical analysis and experimental simulation are comprehensively used to systematically study the hydrocarbon generation material,organic matter enrichment and hydrocarbon generation model of Paleogene source ...The geochemical analysis and experimental simulation are comprehensively used to systematically study the hydrocarbon generation material,organic matter enrichment and hydrocarbon generation model of Paleogene source rock in the Western Qaidam Depression,Qaidam Basin,NW China.Three main factors result in low TOC values of saline lacustrine source rock of the Qaidam Basin:relatively poor nutrient supply inhibits the algal bloom,too fast deposition rate causes the dilution of organic matter,and high organic matter conversion efficiency causes the low residual organic carbon.For this type of hydrogen-rich organic matter,due to the reduction of organic carbon during hydrocarbon generation,TOC needs to be restored based on maturity before evaluating organic matter abundance.The hydrocarbon generation of saline lacustrine source rocks of the Qaidam Basin is from two parts:soluble organic matter and insoluble organic matter.The soluble organic matter is inherited from organisms and preserved in saline lacustrine basins.It generates hydrocarbons during low-maturity stage,and the formed hydrocarbons are rich in complex compounds such as NOS,and undergo secondary cracking to form light components in the later stage;the hydrocarbon generation model of insoluble organic matter conforms to the traditional“Tissot”model,with an oil generation peak corresponding to Ro of 1.0%.展开更多
The origin of dolomite in Shahejie Formation shale of Jiyang Depression in eastern China were studied by means of petrologic identification, compositional analysis by X-ray diffraction, stable carbon and oxygen isotop...The origin of dolomite in Shahejie Formation shale of Jiyang Depression in eastern China were studied by means of petrologic identification, compositional analysis by X-ray diffraction, stable carbon and oxygen isotopic composition, and trace element and rare earth element analyses. The results show that the development of dolomite is limited in the lacustrine organic rich shale of Shahejie Formation in the study area. Three kinds of dolomite minerals can be identified: primary dolomite(D1), penecontemporaneous dolomite(D2), and ankerite(Ak). D1 has the structure of primary spherical dolomite, high magnesium and high calcium, with order degree of 0.3-0.5, and is characterized by the intracrystalline corrosion and coexistence of secondary enlargement along the outer edge. D2 has the characteristics of secondary enlargement, order degree of 0.5-0.7, high magnesium, high calcium and containing a little iron and manganese elements. Ak is characterized by high order degree of 0.7-0.9, rhombic crystal, high magnesium, high calcium and high iron. The micritic calcite belongs to primary origin on the basis of the carbon and oxygen isotopic compositions and the fractionation characteristics of rare earth elements. According to the oxygen isotopic fractionation equation between paragenetic dolomite and calcite, it is calculated that the formation temperature of dolomite in the shale is between 36.76-45.83 ℃, belonging to lacustrine low-temperature dolomite. Based on the maturation and growth mechanism of primary and penecontemporaneous dolomite crystals, a dolomite diagenetic sequence and the dolomitization process are proposed, which is corresponding to the diagenetic environment of Shahejie Formation shale in the study area.展开更多
Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite sh...Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite showed excellent floatability while talc was completely depressed by TG,thus realizing the flotation separation of the two minerals.X-ray photoelectron spectroscopy(XPS)analysis results showed that TG was adsorbed on molybdenite surface via chemisorption.The results of contact angle measurement,Fourier transform infrared(FTIR)spectroscopy,and time-of-flight secondary ion mass spectrometry(ToF-SIMS)indicated that the pre-adsorption of TG on molybdenite could not hinder the further chemisorption of PBX on molybdenite.Because PBX has no collecting ability on talc,the flotation separation of molybdenite and talc came true using PBX to collect molybdenite and TG to depress talc.展开更多
The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications.It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic ...The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications.It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic property.We investigate the atomic structures and optoelectronic properties of non-toxic organic tin bromide perovskites(OTBP)with one/zerodimensional(1D/0D)structures by first-principles calculations.The calculated atomic structures show that the 1D/0D OTBPs are stable and the structure of inorganic octahedra in 0D is higher order than that in 1D.Moreover,the origination of exceptional purity emitting light in experiments is explained based on the calculated electronic structure.展开更多
基金Project(50864001) supported by the National Natural Science Foundation of ChinaProject(0991082) supported by Guangxi Natural Science Foundation, China
文摘Ten kinds of organic depressants were used to investigate the depressing performance on marmatite and pyrite.Flotation results show that the organic compounds only with single group of hydroxyl(-OH),carboxyl(-COOH) or amino(-NH2) in molecule are ineffective in depressing marmatite,jamesonite and pyrite.The combinations of these functional groups still cannot enhance the depressing ability of organic depressant.The thioglycollic acid containing reductive functional group(-SH) has a good depressing performance for marmatite and pyrite.The presence of benzene ring in molecule can enhance the depressing performance.The functional group electronegativity,hydrophilic-hydrophobic indexes and frontier orbital of organic depressants were calculated,and the criterion for the depressing effect of organic depressants to sulphide minerals was proposed.
文摘In this paper, the separation of arsenopyrite from chalcopyrite, pyrite, galena with organic depressants (guergum and sodium humic ) was discussed, and the functioning mechanism of those organic depressants was discussed. The experimental results of monomineral flotation indicated that both guergum and sodium humic have depressing effect on arsenopyrite in the presence of ethyl xanthate. Guergum and sodium humic showed different depressing ability to pyrite, chalcopyrite and galena, and the higher the pH value in pulp, the stronger the depressing ability. Ultraviolet-Visible Spectrophotometric study showed that the adsorption layer of xanthate on surface of minerals had been desorhed by the two organic depressants, and the selective desorption of the collector layer was found from different minerals. The xanthate cover on minerals surface was set free when dosage of the organic depressants was high enough. For artificially-mixed minerals, the separation of arsenopyrite from other sulphides was successfully realized by controlling dosage of the organic depressants. And sodium humic had been concentrates in a commercial Lead-Zinc concentrator.
基金Supported by the PetroChina Science and Technology Project(2021DJ1808).
文摘The geochemical analysis and experimental simulation are comprehensively used to systematically study the hydrocarbon generation material,organic matter enrichment and hydrocarbon generation model of Paleogene source rock in the Western Qaidam Depression,Qaidam Basin,NW China.Three main factors result in low TOC values of saline lacustrine source rock of the Qaidam Basin:relatively poor nutrient supply inhibits the algal bloom,too fast deposition rate causes the dilution of organic matter,and high organic matter conversion efficiency causes the low residual organic carbon.For this type of hydrogen-rich organic matter,due to the reduction of organic carbon during hydrocarbon generation,TOC needs to be restored based on maturity before evaluating organic matter abundance.The hydrocarbon generation of saline lacustrine source rocks of the Qaidam Basin is from two parts:soluble organic matter and insoluble organic matter.The soluble organic matter is inherited from organisms and preserved in saline lacustrine basins.It generates hydrocarbons during low-maturity stage,and the formed hydrocarbons are rich in complex compounds such as NOS,and undergo secondary cracking to form light components in the later stage;the hydrocarbon generation model of insoluble organic matter conforms to the traditional“Tissot”model,with an oil generation peak corresponding to Ro of 1.0%.
基金Supported by the National Natural Science Foundation of China(Grant Nos.42172153,41802172)Sinopec Key Laboratory Project(Grant No.KL21042)Shengli Oilfield Company Project(Grant No.YKS2101)。
文摘The origin of dolomite in Shahejie Formation shale of Jiyang Depression in eastern China were studied by means of petrologic identification, compositional analysis by X-ray diffraction, stable carbon and oxygen isotopic composition, and trace element and rare earth element analyses. The results show that the development of dolomite is limited in the lacustrine organic rich shale of Shahejie Formation in the study area. Three kinds of dolomite minerals can be identified: primary dolomite(D1), penecontemporaneous dolomite(D2), and ankerite(Ak). D1 has the structure of primary spherical dolomite, high magnesium and high calcium, with order degree of 0.3-0.5, and is characterized by the intracrystalline corrosion and coexistence of secondary enlargement along the outer edge. D2 has the characteristics of secondary enlargement, order degree of 0.5-0.7, high magnesium, high calcium and containing a little iron and manganese elements. Ak is characterized by high order degree of 0.7-0.9, rhombic crystal, high magnesium, high calcium and high iron. The micritic calcite belongs to primary origin on the basis of the carbon and oxygen isotopic compositions and the fractionation characteristics of rare earth elements. According to the oxygen isotopic fractionation equation between paragenetic dolomite and calcite, it is calculated that the formation temperature of dolomite in the shale is between 36.76-45.83 ℃, belonging to lacustrine low-temperature dolomite. Based on the maturation and growth mechanism of primary and penecontemporaneous dolomite crystals, a dolomite diagenetic sequence and the dolomitization process are proposed, which is corresponding to the diagenetic environment of Shahejie Formation shale in the study area.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51664020)the Natural Science Foundation of Jiangxi Province,China(No.20202ACBL214010)+1 种基金Open Foundation of State Key Laboratory of Mineral Processing,China(No.BGRIMM-KJSKL-2020-12)Open Foundation of Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,China(No.2018TP1002).
文摘Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite showed excellent floatability while talc was completely depressed by TG,thus realizing the flotation separation of the two minerals.X-ray photoelectron spectroscopy(XPS)analysis results showed that TG was adsorbed on molybdenite surface via chemisorption.The results of contact angle measurement,Fourier transform infrared(FTIR)spectroscopy,and time-of-flight secondary ion mass spectrometry(ToF-SIMS)indicated that the pre-adsorption of TG on molybdenite could not hinder the further chemisorption of PBX on molybdenite.Because PBX has no collecting ability on talc,the flotation separation of molybdenite and talc came true using PBX to collect molybdenite and TG to depress talc.
基金Project supported by the National Natural Science Foundation of China(Grant No.51972102).
文摘The toxicity and degradation of hybrid lead-halide perovskites hinder their extensive applications.It is thus of great importance to explore non-toxic alternative materials with excellent stability and optoelectronic property.We investigate the atomic structures and optoelectronic properties of non-toxic organic tin bromide perovskites(OTBP)with one/zerodimensional(1D/0D)structures by first-principles calculations.The calculated atomic structures show that the 1D/0D OTBPs are stable and the structure of inorganic octahedra in 0D is higher order than that in 1D.Moreover,the origination of exceptional purity emitting light in experiments is explained based on the calculated electronic structure.