The stabilization of severely As-polluted soil has been a challenge, especially for the extremely toxic As(Ⅲ) contaminants. In this study, soil with a high As concentration(26084 mg/kg) was availably stabilized by a ...The stabilization of severely As-polluted soil has been a challenge, especially for the extremely toxic As(Ⅲ) contaminants. In this study, soil with a high As concentration(26084 mg/kg) was availably stabilized by a H2O2 pre-oxidation assisted TMT-15(Na3S3C3N3 solution with a mass fraction of 15%) and FeCl3·6 H2O stabilization method. The results showed that the combination of the two stabilizers(i.e., TMT-15 and FeCl3·6 H2O) presented a better stabilization behavior than either stabilizer used individually. The use of the H2O2 pre-oxidation assisted TMT-15 and FeCl3·6 H2O stabilization approach not only converted the As(Ⅲ) to As(Ⅴ) but also reduced the toxic leaching concentration of As to 1.61 mg/L, which is a safe level, when the additions of TMT-15 and FeCl3·6 H2O were 2 mL and 0.20 g, respectively. Thus, using only a simple H2O2 pre-oxidation to combine clean stabilization with non-toxic stabilizers TMT-15 and FeCl3·6 H2O could render the severely As-contaminated soil safe for disposal in a landfill.展开更多
The degradation of partially hydrolyzed polyacrylamide(HPAM) found in alkaline/surfactant/polymer flooding sewage was investigated using Fenton-type reagents. Different Fenton reagent treatments for HPAM degradation w...The degradation of partially hydrolyzed polyacrylamide(HPAM) found in alkaline/surfactant/polymer flooding sewage was investigated using Fenton-type reagents. Different Fenton reagent treatments for HPAM degradation were compared. The effects of pH, hydrogen peroxide(H_(2)O_(2)), ferrous ion(Fe^(2+)), and tartaric ion(C_(4)H_(4)O_(6)^(2-)) concentrations were studied. The degradation reaction occurred within a wide range of pH(3–9). The HPAM degradation performance of photo-Fenton processes using solar light and UV were compared with that of the Fenton process. The degradation rate was found to be strongly dependent on the H_(2)O_(2)/Fe^(2+)/C_(4)H_(4)O_(6)^(2-)molar ratio. The HPAM degradation efficiency was 90%, and the chemical oxygen demand removal efficiency was 85%. HPAM could be degraded into a compound with a lower molecular weight, but it was difficult to achieve complete mineralization to CO_(2). The presence of intermediate products hindered further oxidation in the Fenton process.展开更多
The unusual and remarkable property of parasporin 2 of non-insecticidal Bacillus thuringiensis is specifically recognizing and selectively targeting human leukemic cell lines. The 37-kDa inactive nascent protein is pr...The unusual and remarkable property of parasporin 2 of non-insecticidal Bacillus thuringiensis is specifically recognizing and selectively targeting human leukemic cell lines. The 37-kDa inactive nascent protein is proteolytically cleaved to the 30-kDa active form that loses both the N-terminal and the C-terminal segments. Accumulated cytological and biochemical observations on parasporin-2 imply that the protein is a pore-forming toxin. To confirm the hypothesis, insilico analysis was performed using homology modeling. The resulting model of parasporin 2 protein is unusually elongated and mainly comprises long β-strands aligned with its long axis. It is similar to aerolysin-type β-pore-forming toxins, which strongly reinforce the pore-forming hypothesis. The molecule can be divided into three domains. Domain 1, comprising a small β-sheet sandwiched by short α-helices, is probably the target-binding module. Two other domains are both β-sandwiches and thought to be involved in oligomerization and pore formation. Domain 2 has a putative channel-forming β-hairpin characteristic of aerolysin-type toxins. The surface of the protein has an extensive track of exposed side chains of serine and threonine residues. The track might orient the molecule on the cell membrane when domain 1 binds to the target until oligomerization and pore formation are initiated. The β-hairpin has such a tight structure that it seems unlikely to reform as postulated in a recent model of pore formation developed for aerolysin-type toxins. Parasporin 2 (Accession no: BAD35170) protein sequence analysis indicated two different domains namely, aerolysin toxin and clostridium toxin domain based on different database searches (CDD and Pfam). It showed a close similarity with the available PDB template (PDB id: 2ZTB) of parasporin which has cytocidal activity against MOLT-4, HL60 and Jurkat cell lines. Based on the PSI Blast analysis, 3D structures of the domains were predicted by using Swiss model server. Accuracy of the prediction of 3D structure of different domains of parasporin protein was further validated by Ramachandran plot and PROCHECK (G-value). The structure is dominated by β-strands (67%, S1-12), most of which are remarkably extensive, running all or most of the longer axis of the molecule. This study helped to elucidate the 3D structure of parasporin 2 (Acc. No. BAD35170) which might enable to probe further its specific mechanism of action. Though the similarity is observed in the domain architecture, there is variation in the regions of the domains even among the same group of parasporin 2. Docking of this model structure and experimental structure with specific receptors of the cancer cells will facilitate to explore mechanism of parasporin 2 action and also provide information about its evolutionary relationship with toxic Cry proteins.展开更多
基金financially supported by the National Key R&D Program of China (No. 2018YFC1802400)the National Natural Science Foundation of China (No. 51604310)+1 种基金the Major Project of Central Research Institute of Building and Construction (No. XAC2017Ky03)the Opening Foundation of State Key Laboratory for Environmental Protection of Iron and Steel Industry (No. 2016YZC02)
文摘The stabilization of severely As-polluted soil has been a challenge, especially for the extremely toxic As(Ⅲ) contaminants. In this study, soil with a high As concentration(26084 mg/kg) was availably stabilized by a H2O2 pre-oxidation assisted TMT-15(Na3S3C3N3 solution with a mass fraction of 15%) and FeCl3·6 H2O stabilization method. The results showed that the combination of the two stabilizers(i.e., TMT-15 and FeCl3·6 H2O) presented a better stabilization behavior than either stabilizer used individually. The use of the H2O2 pre-oxidation assisted TMT-15 and FeCl3·6 H2O stabilization approach not only converted the As(Ⅲ) to As(Ⅴ) but also reduced the toxic leaching concentration of As to 1.61 mg/L, which is a safe level, when the additions of TMT-15 and FeCl3·6 H2O were 2 mL and 0.20 g, respectively. Thus, using only a simple H2O2 pre-oxidation to combine clean stabilization with non-toxic stabilizers TMT-15 and FeCl3·6 H2O could render the severely As-contaminated soil safe for disposal in a landfill.
基金the Northeast Petroleum University Youth Science Foundation (No. 2019QNL-35)Guiding Science and Technology Plan Project of Daqing (No. zd-2021-39)。
文摘The degradation of partially hydrolyzed polyacrylamide(HPAM) found in alkaline/surfactant/polymer flooding sewage was investigated using Fenton-type reagents. Different Fenton reagent treatments for HPAM degradation were compared. The effects of pH, hydrogen peroxide(H_(2)O_(2)), ferrous ion(Fe^(2+)), and tartaric ion(C_(4)H_(4)O_(6)^(2-)) concentrations were studied. The degradation reaction occurred within a wide range of pH(3–9). The HPAM degradation performance of photo-Fenton processes using solar light and UV were compared with that of the Fenton process. The degradation rate was found to be strongly dependent on the H_(2)O_(2)/Fe^(2+)/C_(4)H_(4)O_(6)^(2-)molar ratio. The HPAM degradation efficiency was 90%, and the chemical oxygen demand removal efficiency was 85%. HPAM could be degraded into a compound with a lower molecular weight, but it was difficult to achieve complete mineralization to CO_(2). The presence of intermediate products hindered further oxidation in the Fenton process.
文摘The unusual and remarkable property of parasporin 2 of non-insecticidal Bacillus thuringiensis is specifically recognizing and selectively targeting human leukemic cell lines. The 37-kDa inactive nascent protein is proteolytically cleaved to the 30-kDa active form that loses both the N-terminal and the C-terminal segments. Accumulated cytological and biochemical observations on parasporin-2 imply that the protein is a pore-forming toxin. To confirm the hypothesis, insilico analysis was performed using homology modeling. The resulting model of parasporin 2 protein is unusually elongated and mainly comprises long β-strands aligned with its long axis. It is similar to aerolysin-type β-pore-forming toxins, which strongly reinforce the pore-forming hypothesis. The molecule can be divided into three domains. Domain 1, comprising a small β-sheet sandwiched by short α-helices, is probably the target-binding module. Two other domains are both β-sandwiches and thought to be involved in oligomerization and pore formation. Domain 2 has a putative channel-forming β-hairpin characteristic of aerolysin-type toxins. The surface of the protein has an extensive track of exposed side chains of serine and threonine residues. The track might orient the molecule on the cell membrane when domain 1 binds to the target until oligomerization and pore formation are initiated. The β-hairpin has such a tight structure that it seems unlikely to reform as postulated in a recent model of pore formation developed for aerolysin-type toxins. Parasporin 2 (Accession no: BAD35170) protein sequence analysis indicated two different domains namely, aerolysin toxin and clostridium toxin domain based on different database searches (CDD and Pfam). It showed a close similarity with the available PDB template (PDB id: 2ZTB) of parasporin which has cytocidal activity against MOLT-4, HL60 and Jurkat cell lines. Based on the PSI Blast analysis, 3D structures of the domains were predicted by using Swiss model server. Accuracy of the prediction of 3D structure of different domains of parasporin protein was further validated by Ramachandran plot and PROCHECK (G-value). The structure is dominated by β-strands (67%, S1-12), most of which are remarkably extensive, running all or most of the longer axis of the molecule. This study helped to elucidate the 3D structure of parasporin 2 (Acc. No. BAD35170) which might enable to probe further its specific mechanism of action. Though the similarity is observed in the domain architecture, there is variation in the regions of the domains even among the same group of parasporin 2. Docking of this model structure and experimental structure with specific receptors of the cancer cells will facilitate to explore mechanism of parasporin 2 action and also provide information about its evolutionary relationship with toxic Cry proteins.
基金This work was supported by the National Natural Science Foundation of China(No.22273104,No.22022306,No.22288201)the Innovation Program for Quantum Science and Technology(No.2021ZD 0303305)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450202)Liaoning Revitalization Talents Program(No.XLYC 2203062)the Dalian Innovation Support Program(No.2021RD05).