This work presented the development and validation of an analytical method to predict the transient temperature field in the asphalt pavement.The governing equation for heat transfer was based on heat conduction radia...This work presented the development and validation of an analytical method to predict the transient temperature field in the asphalt pavement.The governing equation for heat transfer was based on heat conduction radiation and convection.An innovative time-dependent function was proposed to predict the pavement surface temperature with solar radiation and air temperature using dimensional analysis in order to simplify the complex heat exchange on the pavement surface.The parameters for the time-dependent pavement surface temperature function were obtained through the regression analysis of field measurement data.Assuming that the initial pavement temperature distribution was linear and the influence of the base course materials on the temperature of the upper asphalt layers was negligible,a close-form analytical solution of the temperature in asphalt layers was derived using Green's function.Finally,two numerical examples were presented to validate the model solutions with field temperature measurements.Analysis results show that the solution accuracy is in agreement with field data and the relative errors at a shallower depth are greater than those at a deeper one.Although the model is not sensitive to dramatic changes in climatic factors near the pavement surface,it is applicable for predicting pavement temperature field in cloudless days.展开更多
Heat losses from the furnaces depend on the design and size. The surface heat loss from the bottom of an industrial AC electric arc furnace (EAF) possesses an important fraction of overall losses. So in this study the...Heat losses from the furnaces depend on the design and size. The surface heat loss from the bottom of an industrial AC electric arc furnace (EAF) possesses an important fraction of overall losses. So in this study the transient temperature variation at the bottom of the EAF was investigated. The transient temperature analysis was carried out using MATLAB computer program. T=T(r, t) for different bottom lining layers was depicted.展开更多
During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it i...During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.展开更多
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni...Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.展开更多
A comparison of the temperature dependence of the P-hit single event transient (SET) in a two-transistor (2T) inverter with that in a three-transistor (3T) inverter is carried out based on a three-dimensional nu...A comparison of the temperature dependence of the P-hit single event transient (SET) in a two-transistor (2T) inverter with that in a three-transistor (3T) inverter is carried out based on a three-dimensional numerical simulation. Due to the significantly distinct mechanisms of the single event change collection in the 2T and the 3T inverters, the temperature plays different roles in the SET production and propagation. The SET pulse will be significantly broadened in the 2T inverter chain while will be compressed in the 3T inverter chain as temperature increases. The investigation provides a new insight into the SET mitigation under the extreme environment, where both the high temperature and the single event effects should be considered. The 3T inverter layout structure (or similar layout structures) will be a better solution for spaceborne integrated circuit design for extreme environments.展开更多
Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studi...Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both ]30-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor.展开更多
In this paper, we investigate the temperature and drain bias dependency of single event transient (SET) in 25-nm fin field-effect-transistor (FinFET) technology in a temperature range of 0-135 ℃ and supply voltag...In this paper, we investigate the temperature and drain bias dependency of single event transient (SET) in 25-nm fin field-effect-transistor (FinFET) technology in a temperature range of 0-135 ℃ and supply voltage range of 0.4 V- 1.6 V. Technology computer-aided design (TCAD) three-dimensional simulation results show that the drain current pulse duration increases from 0.6 ns to 3.4 ns when the temperature increases from 0 to 135 ℃. The charge collected increases from 45.5 ℃ to 436.9 fC and the voltage pulse width decreases from 0.54 ns to 0.18 ns when supply voltage increases from 0.4 V to 1.6 V. Furthermore, simulation results and the mechanism of temperature and bias dependency are discussed.展开更多
A numerical analysis is provided to scrutinize time-dependent magnetohydrodynamics(MHD) free and forced convection of an electrically conducting non-Newtonian Casson nanofluid flow in the forward stagnation point regi...A numerical analysis is provided to scrutinize time-dependent magnetohydrodynamics(MHD) free and forced convection of an electrically conducting non-Newtonian Casson nanofluid flow in the forward stagnation point region of an impulsively rotating sphere with variable wall temperature. A single-phase flow of nanofluid model is reflected with a number of experimental formulae for both effective viscosity and thermal conductivity of nanofluid. Exceedingly nonlinear governing partial differential equations(PDEs)subject to their compatible boundary conditions are mutated into a system of nonlinear ordinary differential equations(ODEs). The derived nonlinear system is solved numerically with implementation of an implicit finite difference procedure merging with a technique of quasi-linearization. The controlled parameter impacts are clarified by a parametric study of the entire flow regime. It is depicted that from all the exhibited nanoparticles,Cu possesses the best convection. The surface heat transfer and surface shear stresses in the x-and z-directions are boosted with maximizing the values of nanoparticle solid volume fraction ? and rotation λ. Besides, as both the surface temperature exponent n and the Casson parameter γ upgrade, an enhancement of the Nusselt number is given.展开更多
The on-orhit transient temperature of reflector laminate film was analyzed by using finite element method (FEM). Numerical simulation was used by FEM software ANSYS. Results reveal that the temperature levels of the...The on-orhit transient temperature of reflector laminate film was analyzed by using finite element method (FEM). Numerical simulation was used by FEM software ANSYS. Results reveal that the temperature levels of the laminate composite membrane alternate greatly in the orbital period, which is about±80℃. This range exceeds the material ' s operating temperature level. So it is necessary to put effective thermal control into effect to the laminate composite membrane. There is temperature gradient in the thickness direction of the laminate composite membrane; there is a light change in Kevlar/Epoxy layer. The temperature of the laminate composite membrane is obviously lower than the seam' s temperature. Results provide reference to the thermal control of the inflatable reflector with high precision requirement.展开更多
Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- chan...Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Ther^nal network method combined with hierarchical dynamic- grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.展开更多
One of the primary reasons leading to bulging and cracking in a coke drum is the severe temperature gradient due to cyclic temperature variation. Based on the twodimensional heat conduction theory, an analytical solut...One of the primary reasons leading to bulging and cracking in a coke drum is the severe temperature gradient due to cyclic temperature variation. Based on the twodimensional heat conduction theory, an analytical solution of the transient temperature field in the coke drum is obtained, which is different from the known FEM results. The length of the coke drum is considered finite. The dynamic boundary conditions caused by fluid uninterrupted rising in oiling and watering stages are simulated with the iteration method. Numerical results show that the present theoretical model can accurately describe basic features of the transient temperature field in the coke drum. Effects of the geometry of the coke drum and the rising velocity of quench water on the axial temperature gradient are also discussed.展开更多
This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect ...This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect transistors(NMOSFETs).Technology computer-aided design(TCAD) three-dimensional(3D) simulations show that the drain current pulse duration increases from 85 ps to 245 ps for triple-well but only increases from 65 ps to 98 ps for dual-well when the temperature increases from-55℃ to 125℃,which is closely correlated with the NMOSFET sources.This reveals that the pulse width increases with temperature in dual-well due to the weakening of the anti-amplification bipolar effect while increases with temperature in triple-well due to the enhancement of the bipolar amplification.展开更多
Based on the situation of welding thermal conduction and thermo-elasto-platicity research, this paper explores some problems in this field. First, the boundary element method for nonlinear problems is improved by line...Based on the situation of welding thermal conduction and thermo-elasto-platicity research, this paper explores some problems in this field. First, the boundary element method for nonlinear problems is improved by linearization of nonlinear problems and used in welding thermal conduction analysis. Second, the thermo-elasto-plastic finite element method is used for the welding stress calculation, in which the phase transformation is considered by the 'equivalent linear expansion coefficient method'. The comparison of the calculated results with experimental data shows that the methods provided in this paper are available.展开更多
Detailed analysis on transient characteristics of ECL circuits are performed in this paper, then a relatively exact propagation delay expression applied for all temperatures is presented. The cryogenic characteristics...Detailed analysis on transient characteristics of ECL circuits are performed in this paper, then a relatively exact propagation delay expression applied for all temperatures is presented. The cryogenic characteristics of some dominant parameters contributed to propagation delay are also discussed. The model achieved is suitable for optimum designs of high speed devices and circuits at all temperatures.展开更多
This paper analyses the transient characteristics of high temperature CMOS inverters and gate circuits, and gives the computational formulas of their rise time, fall time and delay time. It may be concluded that the t...This paper analyses the transient characteristics of high temperature CMOS inverters and gate circuits, and gives the computational formulas of their rise time, fall time and delay time. It may be concluded that the transient characteristics of CMOS inverters and gate circuits deteriorate due to the reduction of carrier mobilities and threshold voltages of MOS transistors and the increase of leakage currents of MOS transistors drain terminal pn junctions. The calculation results can explain the experimental phenomenon.展开更多
This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear...This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.展开更多
In indoor environments and shady outdoor environments, there is little influence of short-wavelength solar radiation, so a strikingly non-uniform and asymmetric environment is not formed. In outdoor sunny environment,...In indoor environments and shady outdoor environments, there is little influence of short-wavelength solar radiation, so a strikingly non-uniform and asymmetric environment is not formed. In outdoor sunny environment, however, shaded areas occur even for the same site of the body, and a remarkable difference in skin temperature is considered to occur under the influence of the short-wavelength solar radiation. The purpose of this study is to clarify the influence of the non-uniform and asymmetric thermal radiation of short-wavelength solar radiation in outdoor environment on the division of the body surface section and the calculation of the mean skin temperature. The skin temperature of the front of the coronal surface, which was facing the sun and where the body received direct short-wavelength solar radiation, and the skin temperature of the rear of the coronal surface, which was in the shadow and did not receive direct short-wavelength solar radiation were respectively measured. The feet, upper arm, forearm, hand and lower leg, which are susceptible to short-wavelength solar radiation in a standing posture, had a noticeable difference in skin temperature between sites in the sun and in shade. The mean skin temperature of sites facing the sun was significantly higher than the mean skin temperature of those in the shade.展开更多
The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for...The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations and for isothermal and/or adiabatic temperature boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analyzed. One linear and five non-uniform temperature profiles are considered and their comparative influence on onset is discussed.展开更多
The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are ob...The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for an upper free/adiabatic and lower rigid/isothermal boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their comparative influence on onset is discussed.展开更多
Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work in...Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.展开更多
基金Project(2012zzts019)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(201306370121)supported by State Scholarship Fund of ChinaProject(51248006)supported by the National Natural Science Foundation,China
文摘This work presented the development and validation of an analytical method to predict the transient temperature field in the asphalt pavement.The governing equation for heat transfer was based on heat conduction radiation and convection.An innovative time-dependent function was proposed to predict the pavement surface temperature with solar radiation and air temperature using dimensional analysis in order to simplify the complex heat exchange on the pavement surface.The parameters for the time-dependent pavement surface temperature function were obtained through the regression analysis of field measurement data.Assuming that the initial pavement temperature distribution was linear and the influence of the base course materials on the temperature of the upper asphalt layers was negligible,a close-form analytical solution of the temperature in asphalt layers was derived using Green's function.Finally,two numerical examples were presented to validate the model solutions with field temperature measurements.Analysis results show that the solution accuracy is in agreement with field data and the relative errors at a shallower depth are greater than those at a deeper one.Although the model is not sensitive to dramatic changes in climatic factors near the pavement surface,it is applicable for predicting pavement temperature field in cloudless days.
文摘Heat losses from the furnaces depend on the design and size. The surface heat loss from the bottom of an industrial AC electric arc furnace (EAF) possesses an important fraction of overall losses. So in this study the transient temperature variation at the bottom of the EAF was investigated. The transient temperature analysis was carried out using MATLAB computer program. T=T(r, t) for different bottom lining layers was depicted.
基金the financial support provided by the National Natural Science Foundation of China(No.52104043)。
文摘During the production,the fluid in the vicinity of the directional well enters the wellbore with different rates,leading to non-uniform flux distribution along the directional well.However,in all existing studies,it is oversimplified to a uniform flux distribution,which can result in inaccurate results for field applications.Therefore,this paper proposes a semi-analytical model of a directional well based on the assumption of non-uniform flux distribution.Specifically,the direction well is discretized into a carefully chosen series of linear sources,such that the complex well trajectory can be captured and the nonuniform flux distribution along the wellbore can be considered to model the three-dimensional flow behavior.By using the finite difference method,we can obtain the numerical solutions of the transient flow within the wellbore.With the aid of Green's function method,we can obtain the analytical solutions of the transient flow from the matrix to the wellbore.The complete flow behavior of a directional well is perfectly represented by coupling the above two types of transient flow.Subsequently,on the basis of the proposed model,we conduct a comprehensive analysis of the pressure transient behavior of a directional well.The computation results show that the flux variation along the direction well has a significant effect on pressure responses.In addition,the directional well in an infinite reservoir may exhibit the following flow regimes:wellbore afterflow,transition flow,inclined radial flow,elliptical flow,horizontal linear flow,and horizontal radial flow.The horizontal linear flow can be observed only if the formation thickness is much smaller than the well length.Furthermore,a dip region that appears on the pressure derivative curve indicates the three-dimensional flow behavior near the wellbore.
基金This work is supported by the National Natural Science Foundation of China(No.52104049)the Young Elite Scientist Sponsorship Program by Beijing Association for Science and Technology(No.BYESS2023262)Science Foundation of China University of Petroleum,Beijing(No.2462022BJRC004).
文摘Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves.
基金Project supported by the Key Program of the National Natural Science Foundation of China(Grant No.60836004)
文摘A comparison of the temperature dependence of the P-hit single event transient (SET) in a two-transistor (2T) inverter with that in a three-transistor (3T) inverter is carried out based on a three-dimensional numerical simulation. Due to the significantly distinct mechanisms of the single event change collection in the 2T and the 3T inverters, the temperature plays different roles in the SET production and propagation. The SET pulse will be significantly broadened in the 2T inverter chain while will be compressed in the 3T inverter chain as temperature increases. The investigation provides a new insight into the SET mitigation under the extreme environment, where both the high temperature and the single event effects should be considered. The 3T inverter layout structure (or similar layout structures) will be a better solution for spaceborne integrated circuit design for extreme environments.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60836004, 61076025, and 61006070)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20104307120006)
文摘Using three-dimensional technology computer-aided design (TCAD) simulation, parasitic bipolar amplification in a single event transient (SET) current of a single transistor and its temperature dependence are studied. We quantify the contributions of different current components in a SET current pulse, and it is found that the proportion of parasitic bipolar amplification in total collected charge is about 30% in both ]30-nm and 90-nm technologies. The temperature dependence of parasitic bipolar amplification and the mechanism of the SET pulse are also investigated and quantified. The results show that the proportion of charge induced by parasitic bipolar increases with rising temperature, which illustrates that the parasitic bipolar amplification plays an important role in the charge collection of a single transistor.
基金Project supported by the State Key Program of the National Natural Science of China (Grant No. 60836004)the National Natural Science Foundation of China (Grant Nos. 61076025 and 60906014)
文摘In this paper, we investigate the temperature and drain bias dependency of single event transient (SET) in 25-nm fin field-effect-transistor (FinFET) technology in a temperature range of 0-135 ℃ and supply voltage range of 0.4 V- 1.6 V. Technology computer-aided design (TCAD) three-dimensional simulation results show that the drain current pulse duration increases from 0.6 ns to 3.4 ns when the temperature increases from 0 to 135 ℃. The charge collected increases from 45.5 ℃ to 436.9 fC and the voltage pulse width decreases from 0.54 ns to 0.18 ns when supply voltage increases from 0.4 V to 1.6 V. Furthermore, simulation results and the mechanism of temperature and bias dependency are discussed.
文摘A numerical analysis is provided to scrutinize time-dependent magnetohydrodynamics(MHD) free and forced convection of an electrically conducting non-Newtonian Casson nanofluid flow in the forward stagnation point region of an impulsively rotating sphere with variable wall temperature. A single-phase flow of nanofluid model is reflected with a number of experimental formulae for both effective viscosity and thermal conductivity of nanofluid. Exceedingly nonlinear governing partial differential equations(PDEs)subject to their compatible boundary conditions are mutated into a system of nonlinear ordinary differential equations(ODEs). The derived nonlinear system is solved numerically with implementation of an implicit finite difference procedure merging with a technique of quasi-linearization. The controlled parameter impacts are clarified by a parametric study of the entire flow regime. It is depicted that from all the exhibited nanoparticles,Cu possesses the best convection. The surface heat transfer and surface shear stresses in the x-and z-directions are boosted with maximizing the values of nanoparticle solid volume fraction ? and rotation λ. Besides, as both the surface temperature exponent n and the Casson parameter γ upgrade, an enhancement of the Nusselt number is given.
文摘The on-orhit transient temperature of reflector laminate film was analyzed by using finite element method (FEM). Numerical simulation was used by FEM software ANSYS. Results reveal that the temperature levels of the laminate composite membrane alternate greatly in the orbital period, which is about±80℃. This range exceeds the material ' s operating temperature level. So it is necessary to put effective thermal control into effect to the laminate composite membrane. There is temperature gradient in the thickness direction of the laminate composite membrane; there is a light change in Kevlar/Epoxy layer. The temperature of the laminate composite membrane is obviously lower than the seam' s temperature. Results provide reference to the thermal control of the inflatable reflector with high precision requirement.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51676055 and 51536001)
文摘Based on the analysis of factors affecting transient temperature field of aircraft fuel tank and coupled heat transfer mechanism, a mathematical model of transient coupled heat transfer, including the dynamic- change of fuel quality, the internal heat transfer, the external aerodynamic convection and the radiation heat transfer, is established. Taking the aerodynamic convection and radiation heat transfer outside the tank as the third kinds of thermal boundary conditions for the thermal analysis of the fuel tank, calculation of internal and external coupling heat of fuel tank is decoupled. Ther^nal network method combined with hierarchical dynamic- grid is used to deal with the fuel consumption, and carry on the heat transfer analysis of the fuel tank. The numerical method for the transient temperature field of aircraft fuel tank is established. Through the simulation calculation, the transient temperature distribution of the fuel tank under different flight conditions is obtained, and the influence of the fuel mass and the external thermal environment on the temperature field is analyzed.
基金Project supported by the National Natural Science Foundation of China (Nos. 10372035 and10902043)the Key Laboratory of Diagnosis of Fault in Engineering Structures of Guangdong Province of China
文摘One of the primary reasons leading to bulging and cracking in a coke drum is the severe temperature gradient due to cyclic temperature variation. Based on the twodimensional heat conduction theory, an analytical solution of the transient temperature field in the coke drum is obtained, which is different from the known FEM results. The length of the coke drum is considered finite. The dynamic boundary conditions caused by fluid uninterrupted rising in oiling and watering stages are simulated with the iteration method. Numerical results show that the present theoretical model can accurately describe basic features of the transient temperature field in the coke drum. Effects of the geometry of the coke drum and the rising velocity of quench water on the axial temperature gradient are also discussed.
基金Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 60836004)Innovation Foundation for Postgraduate of Hunan Province,China (Grant No. CX2011B026)
文摘This paper investigates the temperature dependence of single-event transients(SETs) in 90-nm complementary metat-oxide semiconductor(CMOS) dual-well and triple-well negative metal-oxide semiconductor field-effect transistors(NMOSFETs).Technology computer-aided design(TCAD) three-dimensional(3D) simulations show that the drain current pulse duration increases from 85 ps to 245 ps for triple-well but only increases from 65 ps to 98 ps for dual-well when the temperature increases from-55℃ to 125℃,which is closely correlated with the NMOSFET sources.This reveals that the pulse width increases with temperature in dual-well due to the weakening of the anti-amplification bipolar effect while increases with temperature in triple-well due to the enhancement of the bipolar amplification.
文摘Based on the situation of welding thermal conduction and thermo-elasto-platicity research, this paper explores some problems in this field. First, the boundary element method for nonlinear problems is improved by linearization of nonlinear problems and used in welding thermal conduction analysis. Second, the thermo-elasto-plastic finite element method is used for the welding stress calculation, in which the phase transformation is considered by the 'equivalent linear expansion coefficient method'. The comparison of the calculated results with experimental data shows that the methods provided in this paper are available.
文摘Detailed analysis on transient characteristics of ECL circuits are performed in this paper, then a relatively exact propagation delay expression applied for all temperatures is presented. The cryogenic characteristics of some dominant parameters contributed to propagation delay are also discussed. The model achieved is suitable for optimum designs of high speed devices and circuits at all temperatures.
基金Supported by the National Native Science Foundation of China
文摘This paper analyses the transient characteristics of high temperature CMOS inverters and gate circuits, and gives the computational formulas of their rise time, fall time and delay time. It may be concluded that the transient characteristics of CMOS inverters and gate circuits deteriorate due to the reduction of carrier mobilities and threshold voltages of MOS transistors and the increase of leakage currents of MOS transistors drain terminal pn junctions. The calculation results can explain the experimental phenomenon.
基金supported by the Science Fund Research Grant from Kementerian Sains dan Teknologi(MOSTI)
文摘This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.
文摘In indoor environments and shady outdoor environments, there is little influence of short-wavelength solar radiation, so a strikingly non-uniform and asymmetric environment is not formed. In outdoor sunny environment, however, shaded areas occur even for the same site of the body, and a remarkable difference in skin temperature is considered to occur under the influence of the short-wavelength solar radiation. The purpose of this study is to clarify the influence of the non-uniform and asymmetric thermal radiation of short-wavelength solar radiation in outdoor environment on the division of the body surface section and the calculation of the mean skin temperature. The skin temperature of the front of the coronal surface, which was facing the sun and where the body received direct short-wavelength solar radiation, and the skin temperature of the rear of the coronal surface, which was in the shadow and did not receive direct short-wavelength solar radiation were respectively measured. The feet, upper arm, forearm, hand and lower leg, which are susceptible to short-wavelength solar radiation in a standing posture, had a noticeable difference in skin temperature between sites in the sun and in shade. The mean skin temperature of sites facing the sun was significantly higher than the mean skin temperature of those in the shade.
文摘The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations and for isothermal and/or adiabatic temperature boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analyzed. One linear and five non-uniform temperature profiles are considered and their comparative influence on onset is discussed.
文摘The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for an upper free/adiabatic and lower rigid/isothermal boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their comparative influence on onset is discussed.
基金supported by the National Natural Science Foundation of China(No.51808128)the Natural Science Foundation of Fujian Province(No.2022J01091)。
文摘Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.