In this paper, the influencing factors that affect few-mode and multi core optical fiber channel are analyzed in a comprehensive way. The theoretical modeling and computer simulation of the information channel are car...In this paper, the influencing factors that affect few-mode and multi core optical fiber channel are analyzed in a comprehensive way. The theoretical modeling and computer simulation of the information channel are carried out and then the modeling scheme of few-mode multicore optical fiber channel based on non-uniform mode field distribution is put forward. The proposed modeling scheme can not only exponentially increases the system capacity through fewmode multi-core optical fiber channel, but has better transmission performance compared to the channel of the same type to the uniform channel revealing from the simulation results.展开更多
A multistandard software-defined radio base station must perform non-uniform channelization of multiplexed frequency bands. Non-uniform channelization accounts for a significant portion of the digital signal processin...A multistandard software-defined radio base station must perform non-uniform channelization of multiplexed frequency bands. Non-uniform channelization accounts for a significant portion of the digital signal processing workload in the base station receiver and can be difficult to realize in a physical implementation. In non-uniform channelization methods based on generalized DFT filter banks, large prototype filter orders are a significant issue for implementation. In this paper, a multistage filter design is applied to two different non-uniform generalized DFT-based channelizers in order to reduce their filter orders. To evaluate the approach, a TETRA and TEDS base station is used. Experimental results show that the new multistage design reduces both the number of coefficients and operations and leads to a more feasible design and practical physical implementation.展开更多
In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. Howeve...In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. However, unlike the flow of water which has been studied since ancient times, the flow of molten metals in open channels has received little attention. The unsteady non-uniform flow of blast furnace molten pig iron in a rectangular open channel is analyzed in this work by numerical solution of the Saint-Venant equations. The influence of mesh size on the convergence of molten metal height is studied to determine the proper mesh and time step sizes. A sinusoidal inflow pulse is imposed at the entrance of the channel in order to analyze the propagation of the resulting wave. The influence of the angle of inclination of the channel and the roughness coefficient of the walls on the amplitude and the dynamic behavior of the height of the molten metal are analyzed. Phase portraits of the channel state variables are constructed and interpreted. Numerical simulations show that as the angle of inclination of the channel increases, the amplitude of the formed wave decreases. From 10 degrees onwards, the peak of the wave descends even below the initial height. On the other hand, the roughness coefficient affects the molten pig iron height profiles in an inverse way than the angle of inclination. The amplitude of the formed wave increases as the roughness coefficient increases.展开更多
Rectangular microchannel heat sinks(MCHS)are widely used to cool high-heat-flux electronic devices.However,previous studies focused mainly on MCHS with uniform channels(UCs).This study considers a microchannel heat si...Rectangular microchannel heat sinks(MCHS)are widely used to cool high-heat-flux electronic devices.However,previous studies focused mainly on MCHS with uniform channels(UCs).This study considers a microchannel heat sink with non-uniform channels(NUCs).A mathematical model is developed based on energy equations and the Darcy flow principle.Explicit expressions for total thermal resistance and coolant pressure drop are derived using the thermoelectric analogy.Experiments and numerical simulations are performed to verify the mathematical model.As non-uniformity increases,total coolant pressure drop decreases but at the cost of higher thermal resistance.The overall performance of NUCs is better than that of UCs because of their lower ratio of pumping power to cooling power.Heat transfer performance of NUCs changes little for more than 120 channels and depends mainly on channel arrangement.A multi-objective optimization is conducted to minimize the thermal resistance and pumping power of an NUC.An optimal NUC saves 64%pumping power compared with a conventional UC for the total thermal resistance of 0.1℃/W,indicating that the use of non-uniform channels could be very helpful to reduce the flow resistance of MCHS.展开更多
Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase e...Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.展开更多
High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat di...High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat dissipation capability under high-power working conditions,which may cause the overheat,even burn down of motor or other potential safety hazards.Therefore,a structure of mini cooling channels with appropriate channel density is designed in accordance with the non-uniform heat flux of servo motor in this paper.Combined with the regenerative cooling method,the cryogenic fuel supercritical methane is served as the coolant,which is easy to be obtained from the propulsion system,and the heat from the servo motor can be transported to the combustion for reusing.According to the actual working cases of servo motor,a numerical model is built to predict the thermal performance of cooling channels.In order to better represent the secondary flow of coolant in the cooling channels,especially the turbulent mixed flow in the manifold,the k-εRNG model with enhanced wall treatment is employed resulting from its precise capacity to simulate the secondary and wall shear flow.On this basis,the heat transfer mechanism and thermal performance of cooling channels,as well as the influence of various heat flux ratios are investigated,which can offer an in-depth understanding of restraining excessive temperature rise and non-uniformity distribution of the servo motor.By the calculation results,it can be concluded that under the adjustment of the channel density according to the corresponding heat flux,the positive role of the appropriate channel density and the manifolds on heat transfer is manifested.Moreover,the maximum temperature difference of heating wall can be kept within an acceptable range of the servo motor.The heat transfer coefficient in the manifold is nearly 2–4 times higher compared with that in the straight cooling channels.The effect of buoyancy force cannot be neglected even in the manifold with turbulent mixed flow,and the pattern of heat transfer is mixed convection one in all the flow regions.The thermal resistance R and overall Nusselt number Nu are affected remarkably by all the operation parameters studied in the paper,except the pressure,while the overall thermal performance coefficientηdemonstrates differently.The strong impact of heat flux ratio is implied on thermal performance of the cooling channels.Higher heat flux ratio results in the stronger non-uniform temperature distribution.Meanwhile,only tiny temperature differences of the fluid and inner wall in manifolds among various heat flux ratios are demonstrated,resulting from the positive effect of mixture flow on heat transfer.展开更多
A three-dimensional disc model with non-uniform heat generating is built.A series of cooling channels are inserted to cool this disc which is strewn in a hierarchical pattern.To reveal thermal and flow characteristics...A three-dimensional disc model with non-uniform heat generating is built.A series of cooling channels are inserted to cool this disc which is strewn in a hierarchical pattern.To reveal thermal and flow characteristics,a composite objective function comprised of the maximum temperature difference(MTD)and pumping power is constructed.The deployment pattern of cooling channels contains two cases,i.e.,the radial-pattern and dendritic-pattern.By capitalizing on constructal design method together with finite element method,the diameter of radial-pattern cooling channels is optimized in the first place.Next,the diameter,angle coefficient and length coefficient of dendritic-pattern cooling channels are three degrees-of-freedom to be stepwise optimized at different heat generating conditions.Furthermore,NSGA-II algorithm is introduced into the multiobjective problem.Upon obtaining its Pareto optimal solution set,Topsis method is invoked to yield the optimal solutions under given weighted coefficients.The heat generation over the entire body and the volume ratio of cooling channels operate as the primary constraints.Based on these premises,constructal design will be stepwise performed by varying three degrees-offreedom.The obtained results state that more heating components or devices should be installed as close to the cooling water inlet as possible.This can further reduce MTD at the same cost of pumping power,thereby improve thermal and flow performance and prolong the lifespan of devices.As optimized with two degrees-of-freedom,the MTD is reduced by 18.6%compared with the counterpart obtained from single degree-of-freedom optimization,while the pumping power is increased by 59.8%.As optimized with three degrees-of-freedom,the MTD is decreased by 6.2%compared with the counterpart from two degrees-of-freedom optimization,while the pumping power is increased by 3.0%.It is manifest that when two sub-objectives form a composite objective,the performance improvement of one sub-objective will inevitably elicit the vitiation of the alternative.展开更多
In this paper, a smooth repetitive osciflating wave traveling down the elastic walls of a non-uniform two- dimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magn...In this paper, a smooth repetitive osciflating wave traveling down the elastic walls of a non-uniform two- dimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magnetic field is perpendicular to flow. The Sisko fluid is grease thick non-Newtonian fluid can be considered equivalent to blood. Taking long wavelength and low Reynolds number, the equations are reduced. The analytical solution of the emerging non-linear differential equation is obtained by employing Homotopy Perturbation Method (HPM). The outcomes for dimensionless flow rate and dimensionless pressure rise have been computed numerically with respect to sundry concerning parameters amplitude ratio , Hartmann number M, and Sisko fluid parameter bl. The behaviors for pressure rise and average friction have been discussed in details and displayed graphically. Numerical and graphical comparison of Newtonian and non-Newtonian has also been evaluated for velocity and pressure rise. It is observed that the magnitude of pressure rise is maximum in the middle of the channel whereas for higher values of fluid parameter it increases. Further, it is also found that the velocity profile shows converse behavior along the walls of the channel against multiple values of fluid parameter.展开更多
In order to overcome the bit-to-bit interference of the traditional multi-level NAND type device, this paper firstly proposes a novel multi-bit non-uniform channel charge trapping memory (NUC-CTM) device with virtua...In order to overcome the bit-to-bit interference of the traditional multi-level NAND type device, this paper firstly proposes a novel multi-bit non-uniform channel charge trapping memory (NUC-CTM) device with virtual-source NAND-type array architecture, which can effectively restrain the second-bit effect (SBE) and provide 3-bit per cell capability. Owing to the n- buffer region, the SBE induced threshold voltage window shift can be reduced to less than 400 mV and the minimum threshold voltage window between neighboring levels is larger than 750 mV for reliable 3-bit operation. A silicon-rich SiON is also investigated as a trapping layer to improve the retention reliability of the NUC-CTM.展开更多
This study performs a numerical analysis of three-dimensional liquid metal(LM) magnetohydrodynamic(MHD) flows in a square duct with an FCI in a non-uniform magnetic field. The current study predicts detailed informati...This study performs a numerical analysis of three-dimensional liquid metal(LM) magnetohydrodynamic(MHD) flows in a square duct with an FCI in a non-uniform magnetic field. The current study predicts detailed information on flow velocity, Lorentz force, pressure, current and electric potential of MHD duct flows for different Hartmann numbers. Also, the effect of the electric conductivity of FCI on the pressure drop along the main flow direction in a non-uniform magnetic field is examined. The present study investigates the features of LM MHD flows in consideration of the interdependency among the flow variables.展开更多
In this paper, steady incompressible micropolar fluid flow through a non-uniform channel with multiple stenoses is considered. Assuming the stenoses to be mild and using the slip boundary condition, the equations gove...In this paper, steady incompressible micropolar fluid flow through a non-uniform channel with multiple stenoses is considered. Assuming the stenoses to be mild and using the slip boundary condition, the equations governing the flow of the proposed model are solved, and closed-form expressions for the flow characteristics (resistance to flow and wall shear stress) are derived. The effects of different parameters on these flow characteristics are analyzed. It is observed that both the resistance to the flow and the wall shear stress increase with the heights of the stenoses and the slip parameter; but decrease with the Darcy number, b^rthermore, the effects of the wall exponent parameter, the cross-viscosity coefficient and the micropolar parameter on the flow characteristics are discussed.展开更多
This paper presents a new method to numerically solve the viscous incompress- ible steady flow in a channel with non-uniform section by use of the equations of total pressure and velocity.This method is to solve the e...This paper presents a new method to numerically solve the viscous incompress- ible steady flow in a channel with non-uniform section by use of the equations of total pressure and velocity.This method is to solve the equations of total pressure and velocity in the non-or- thogonai curvilinear mesh.The advantages of this method is discussed.展开更多
The turbulence characteristics of both decelerating and accelerating flows under a gradually varying flume are investigated by using a three-dimensional down-looking acoustic Doppler velocimeter (ADV). The time-aver...The turbulence characteristics of both decelerating and accelerating flows under a gradually varying flume are investigated by using a three-dimensional down-looking acoustic Doppler velocimeter (ADV). The time-averaged velocity profiles are flatened except for the central parts, and fairly fit into logarithmic laws and those in the plane circulation under the gradual expansion are more likely to be negative. The complex secondary currents are identified under the present gradual transition attributed to the combination of driving forces induced by both the boundary configuration variation and the tmbalanced turbulence: a circulation on each side of the expansion and a pair of circulations on each side of the contraction. One sees an anisotropy in the turbulence intensities, the turbulence intensities increase or level out with the flow depth except those under expansion, and the V component of the turbulence intensity typically outweighs that in the streamwise direction. Apart from the above results, the respective particular distributions of the primary Reynolds shear stresses ( rxy and rxz ) under the gradual expansion and contraction can account for the patterns of the secondary currents in this investigation.展开更多
The charge transfer efficiency improvement method is introduced by optimizing the electrical potential distribution under the transfer gate along the charge transfer path. A non-uniform doped transfer transistor chan-...The charge transfer efficiency improvement method is introduced by optimizing the electrical potential distribution under the transfer gate along the charge transfer path. A non-uniform doped transfer transistor chan- nel is introduced to provide an ascending electrical potential gradient in the transfer transistor channel. With the adjustments to the overlap length between the R1 region and the transfer gate, the doping dose of the R1 region, and the overlap length between the anti-punch-through (APT) implantations and transfer gate, the potential barrier and potential pocket in the connecting region of transfer transistor channel and the pinned photodiode (PPD) are reduced to improve the electrical potential connection. The simulation results show that the percentage of residual charges to total charges drops from 1/10^4 to 1/10^7, and the transfer time is reduced from 500 to 110 ns. This means the charge transfer efficiency is improved.展开更多
基金supports from National High Technology 863 Program of China(No.2013AA013403,2015AA015501,2015AA015502,2015AA015504)National NSFC(No.61425022/61522501/61307086/61475024/61275158/61201151/61275074/61372109)+4 种基金Beijing Nova Program(No.Z141101001814048)Beijing Excellent Ph.D.Thesis Guidance Foundation(No.20121001302)the Universities Ph.D.Special Research Funds(No.20120005110003/20120005120007)Fund of State Key Laboratory of IPOC(BUPT)P.R.China
文摘In this paper, the influencing factors that affect few-mode and multi core optical fiber channel are analyzed in a comprehensive way. The theoretical modeling and computer simulation of the information channel are carried out and then the modeling scheme of few-mode multicore optical fiber channel based on non-uniform mode field distribution is put forward. The proposed modeling scheme can not only exponentially increases the system capacity through fewmode multi-core optical fiber channel, but has better transmission performance compared to the channel of the same type to the uniform channel revealing from the simulation results.
文摘A multistandard software-defined radio base station must perform non-uniform channelization of multiplexed frequency bands. Non-uniform channelization accounts for a significant portion of the digital signal processing workload in the base station receiver and can be difficult to realize in a physical implementation. In non-uniform channelization methods based on generalized DFT filter banks, large prototype filter orders are a significant issue for implementation. In this paper, a multistage filter design is applied to two different non-uniform generalized DFT-based channelizers in order to reduce their filter orders. To evaluate the approach, a TETRA and TEDS base station is used. Experimental results show that the new multistage design reduces both the number of coefficients and operations and leads to a more feasible design and practical physical implementation.
文摘In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. However, unlike the flow of water which has been studied since ancient times, the flow of molten metals in open channels has received little attention. The unsteady non-uniform flow of blast furnace molten pig iron in a rectangular open channel is analyzed in this work by numerical solution of the Saint-Venant equations. The influence of mesh size on the convergence of molten metal height is studied to determine the proper mesh and time step sizes. A sinusoidal inflow pulse is imposed at the entrance of the channel in order to analyze the propagation of the resulting wave. The influence of the angle of inclination of the channel and the roughness coefficient of the walls on the amplitude and the dynamic behavior of the height of the molten metal are analyzed. Phase portraits of the channel state variables are constructed and interpreted. Numerical simulations show that as the angle of inclination of the channel increases, the amplitude of the formed wave decreases. From 10 degrees onwards, the peak of the wave descends even below the initial height. On the other hand, the roughness coefficient affects the molten pig iron height profiles in an inverse way than the angle of inclination. The amplitude of the formed wave increases as the roughness coefficient increases.
基金supported by Natural Science Foundation of Shandong Province(No.ZR2021QE033)China Postdoctoral Science Foundation(No.2021M702013)the Taishan Scholar Project(Grand No.tsqn202103142)。
文摘Rectangular microchannel heat sinks(MCHS)are widely used to cool high-heat-flux electronic devices.However,previous studies focused mainly on MCHS with uniform channels(UCs).This study considers a microchannel heat sink with non-uniform channels(NUCs).A mathematical model is developed based on energy equations and the Darcy flow principle.Explicit expressions for total thermal resistance and coolant pressure drop are derived using the thermoelectric analogy.Experiments and numerical simulations are performed to verify the mathematical model.As non-uniformity increases,total coolant pressure drop decreases but at the cost of higher thermal resistance.The overall performance of NUCs is better than that of UCs because of their lower ratio of pumping power to cooling power.Heat transfer performance of NUCs changes little for more than 120 channels and depends mainly on channel arrangement.A multi-objective optimization is conducted to minimize the thermal resistance and pumping power of an NUC.An optimal NUC saves 64%pumping power compared with a conventional UC for the total thermal resistance of 0.1℃/W,indicating that the use of non-uniform channels could be very helpful to reduce the flow resistance of MCHS.
文摘Zero Crossing Digital Phase Locked Loop with Arc Sine block (AS-ZCDPLL) is used to linearize the phase difference detection, and enhance the loop performance. The loop has faster acquisition, less steady state phase error, and wider locking range compared to the conventional ZCDPLL. This work presents a Zero Crossing Digital Phase Locked Loop with Arc Sine block (ZCDPLL-AS). The performance of the loop is analyzed under mobile faded channel conditions. The mobile channel is assumed to be two path fading channel corrupted by additive white Gaussian noise (AWGM). It is shown that for a constant filter gain, the frequency spread has no effect on the steady state phase error variance when the loop is subjected to a phase step. For a frequency step and under the same conditions, the effect on phase error is minimal.
基金supported by the National Natural Science Foundation of China(Grant No.52106112,52007153)Natural Science Basic Research Plan of Shaanxi Province in China(Program No.2022JM-185)。
文摘High-power servo motor is widely employed as a necessary actuator in flight vehicles.The urgent problem to be solved restraining the working performance of servo motor is no longer the torque and power,but the heat dissipation capability under high-power working conditions,which may cause the overheat,even burn down of motor or other potential safety hazards.Therefore,a structure of mini cooling channels with appropriate channel density is designed in accordance with the non-uniform heat flux of servo motor in this paper.Combined with the regenerative cooling method,the cryogenic fuel supercritical methane is served as the coolant,which is easy to be obtained from the propulsion system,and the heat from the servo motor can be transported to the combustion for reusing.According to the actual working cases of servo motor,a numerical model is built to predict the thermal performance of cooling channels.In order to better represent the secondary flow of coolant in the cooling channels,especially the turbulent mixed flow in the manifold,the k-εRNG model with enhanced wall treatment is employed resulting from its precise capacity to simulate the secondary and wall shear flow.On this basis,the heat transfer mechanism and thermal performance of cooling channels,as well as the influence of various heat flux ratios are investigated,which can offer an in-depth understanding of restraining excessive temperature rise and non-uniformity distribution of the servo motor.By the calculation results,it can be concluded that under the adjustment of the channel density according to the corresponding heat flux,the positive role of the appropriate channel density and the manifolds on heat transfer is manifested.Moreover,the maximum temperature difference of heating wall can be kept within an acceptable range of the servo motor.The heat transfer coefficient in the manifold is nearly 2–4 times higher compared with that in the straight cooling channels.The effect of buoyancy force cannot be neglected even in the manifold with turbulent mixed flow,and the pattern of heat transfer is mixed convection one in all the flow regions.The thermal resistance R and overall Nusselt number Nu are affected remarkably by all the operation parameters studied in the paper,except the pressure,while the overall thermal performance coefficientηdemonstrates differently.The strong impact of heat flux ratio is implied on thermal performance of the cooling channels.Higher heat flux ratio results in the stronger non-uniform temperature distribution.Meanwhile,only tiny temperature differences of the fluid and inner wall in manifolds among various heat flux ratios are demonstrated,resulting from the positive effect of mixture flow on heat transfer.
基金supported by the National Natural Science Foundation of China(Grant Nos.51779262 and 51579244)the Independent Project of Naval University of Engineering(Grant No.425317Q017)。
文摘A three-dimensional disc model with non-uniform heat generating is built.A series of cooling channels are inserted to cool this disc which is strewn in a hierarchical pattern.To reveal thermal and flow characteristics,a composite objective function comprised of the maximum temperature difference(MTD)and pumping power is constructed.The deployment pattern of cooling channels contains two cases,i.e.,the radial-pattern and dendritic-pattern.By capitalizing on constructal design method together with finite element method,the diameter of radial-pattern cooling channels is optimized in the first place.Next,the diameter,angle coefficient and length coefficient of dendritic-pattern cooling channels are three degrees-of-freedom to be stepwise optimized at different heat generating conditions.Furthermore,NSGA-II algorithm is introduced into the multiobjective problem.Upon obtaining its Pareto optimal solution set,Topsis method is invoked to yield the optimal solutions under given weighted coefficients.The heat generation over the entire body and the volume ratio of cooling channels operate as the primary constraints.Based on these premises,constructal design will be stepwise performed by varying three degrees-offreedom.The obtained results state that more heating components or devices should be installed as close to the cooling water inlet as possible.This can further reduce MTD at the same cost of pumping power,thereby improve thermal and flow performance and prolong the lifespan of devices.As optimized with two degrees-of-freedom,the MTD is reduced by 18.6%compared with the counterpart obtained from single degree-of-freedom optimization,while the pumping power is increased by 59.8%.As optimized with three degrees-of-freedom,the MTD is decreased by 6.2%compared with the counterpart from two degrees-of-freedom optimization,while the pumping power is increased by 3.0%.It is manifest that when two sub-objectives form a composite objective,the performance improvement of one sub-objective will inevitably elicit the vitiation of the alternative.
文摘In this paper, a smooth repetitive osciflating wave traveling down the elastic walls of a non-uniform two- dimensional channels is considered. It is assumed that the fluid is electrically conducting and a uniform magnetic field is perpendicular to flow. The Sisko fluid is grease thick non-Newtonian fluid can be considered equivalent to blood. Taking long wavelength and low Reynolds number, the equations are reduced. The analytical solution of the emerging non-linear differential equation is obtained by employing Homotopy Perturbation Method (HPM). The outcomes for dimensionless flow rate and dimensionless pressure rise have been computed numerically with respect to sundry concerning parameters amplitude ratio , Hartmann number M, and Sisko fluid parameter bl. The behaviors for pressure rise and average friction have been discussed in details and displayed graphically. Numerical and graphical comparison of Newtonian and non-Newtonian has also been evaluated for velocity and pressure rise. It is observed that the magnitude of pressure rise is maximum in the middle of the channel whereas for higher values of fluid parameter it increases. Further, it is also found that the velocity profile shows converse behavior along the walls of the channel against multiple values of fluid parameter.
基金Project supported by the National Basic Research Program of China(No.2006CB302700)
文摘In order to overcome the bit-to-bit interference of the traditional multi-level NAND type device, this paper firstly proposes a novel multi-bit non-uniform channel charge trapping memory (NUC-CTM) device with virtual-source NAND-type array architecture, which can effectively restrain the second-bit effect (SBE) and provide 3-bit per cell capability. Owing to the n- buffer region, the SBE induced threshold voltage window shift can be reduced to less than 400 mV and the minimum threshold voltage window between neighboring levels is larger than 750 mV for reliable 3-bit operation. A silicon-rich SiON is also investigated as a trapping layer to improve the retention reliability of the NUC-CTM.
基金supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology & Ministry of knowledge Economy (Grant No. 2015M1A7A1A02050613)
文摘This study performs a numerical analysis of three-dimensional liquid metal(LM) magnetohydrodynamic(MHD) flows in a square duct with an FCI in a non-uniform magnetic field. The current study predicts detailed information on flow velocity, Lorentz force, pressure, current and electric potential of MHD duct flows for different Hartmann numbers. Also, the effect of the electric conductivity of FCI on the pressure drop along the main flow direction in a non-uniform magnetic field is examined. The present study investigates the features of LM MHD flows in consideration of the interdependency among the flow variables.
文摘In this paper, steady incompressible micropolar fluid flow through a non-uniform channel with multiple stenoses is considered. Assuming the stenoses to be mild and using the slip boundary condition, the equations governing the flow of the proposed model are solved, and closed-form expressions for the flow characteristics (resistance to flow and wall shear stress) are derived. The effects of different parameters on these flow characteristics are analyzed. It is observed that both the resistance to the flow and the wall shear stress increase with the heights of the stenoses and the slip parameter; but decrease with the Darcy number, b^rthermore, the effects of the wall exponent parameter, the cross-viscosity coefficient and the micropolar parameter on the flow characteristics are discussed.
文摘This paper presents a new method to numerically solve the viscous incompress- ible steady flow in a channel with non-uniform section by use of the equations of total pressure and velocity.This method is to solve the equations of total pressure and velocity in the non-or- thogonai curvilinear mesh.The advantages of this method is discussed.
基金supported by the National Natural Science Foundation of China(Grant No.41171016)the Sichuan Province Science and Technology Support Program(Grant No.2014SZ0163)
文摘The turbulence characteristics of both decelerating and accelerating flows under a gradually varying flume are investigated by using a three-dimensional down-looking acoustic Doppler velocimeter (ADV). The time-averaged velocity profiles are flatened except for the central parts, and fairly fit into logarithmic laws and those in the plane circulation under the gradual expansion are more likely to be negative. The complex secondary currents are identified under the present gradual transition attributed to the combination of driving forces induced by both the boundary configuration variation and the tmbalanced turbulence: a circulation on each side of the expansion and a pair of circulations on each side of the contraction. One sees an anisotropy in the turbulence intensities, the turbulence intensities increase or level out with the flow depth except those under expansion, and the V component of the turbulence intensity typically outweighs that in the streamwise direction. Apart from the above results, the respective particular distributions of the primary Reynolds shear stresses ( rxy and rxz ) under the gradual expansion and contraction can account for the patterns of the secondary currents in this investigation.
基金Project supported by National Natural Science Foundation of China(Nos.61036004,61076024)
文摘The charge transfer efficiency improvement method is introduced by optimizing the electrical potential distribution under the transfer gate along the charge transfer path. A non-uniform doped transfer transistor chan- nel is introduced to provide an ascending electrical potential gradient in the transfer transistor channel. With the adjustments to the overlap length between the R1 region and the transfer gate, the doping dose of the R1 region, and the overlap length between the anti-punch-through (APT) implantations and transfer gate, the potential barrier and potential pocket in the connecting region of transfer transistor channel and the pinned photodiode (PPD) are reduced to improve the electrical potential connection. The simulation results show that the percentage of residual charges to total charges drops from 1/10^4 to 1/10^7, and the transfer time is reduced from 500 to 110 ns. This means the charge transfer efficiency is improved.