期刊文献+
共找到216,943篇文章
< 1 2 250 >
每页显示 20 50 100
Sedimentation motion of sand particles in moving water(Ⅰ):The resistance on a small sphere moving in non-uniform flow 被引量:2
1
作者 Shu-Tang Tsai 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第6期432-437,共6页
In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.Bu... In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.But such an approach has not been proved rigorously,and its accuracy must be carefully considered.In this paper,we discuss the problem of a sphere moving in a non-uniform flow field,on the basis of the fundamental theory of hydrodynamics.We introduce two assumptions:i)the diameter of the sphere is much smaller than the linear dimension of the flow field,and ii)the velocity of the sphere relative to the surrounding water is very small.Using these two assumptions,we solve the linearized Navier-Stokes equations and equations of continuity by the method of Laplace transform,and finally we obtain a formula for the resistance acting on a sphere moving in a non-uniform flow field. 展开更多
关键词 Sedimentation motion of sand particles in moving water The resistance on a small sphere moving in non-uniform flow
下载PDF
Unsteady Non-Uniform Flow of Molten Metals in Rectangular Open Channels
2
作者 Miguel A. Barron Joan Reyes Dulce Y. Miranda 《World Journal of Engineering and Technology》 2022年第3期593-604,共12页
In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. Howeve... In the metallurgical industries, it is very important to characterize the flow of molten metals in open channels given that they are transported through these devices to different plant sections. However, unlike the flow of water which has been studied since ancient times, the flow of molten metals in open channels has received little attention. The unsteady non-uniform flow of blast furnace molten pig iron in a rectangular open channel is analyzed in this work by numerical solution of the Saint-Venant equations. The influence of mesh size on the convergence of molten metal height is studied to determine the proper mesh and time step sizes. A sinusoidal inflow pulse is imposed at the entrance of the channel in order to analyze the propagation of the resulting wave. The influence of the angle of inclination of the channel and the roughness coefficient of the walls on the amplitude and the dynamic behavior of the height of the molten metal are analyzed. Phase portraits of the channel state variables are constructed and interpreted. Numerical simulations show that as the angle of inclination of the channel increases, the amplitude of the formed wave decreases. From 10 degrees onwards, the peak of the wave descends even below the initial height. On the other hand, the roughness coefficient affects the molten pig iron height profiles in an inverse way than the angle of inclination. The amplitude of the formed wave increases as the roughness coefficient increases. 展开更多
关键词 Molten Metals flow non-uniform flow Open Channels Pig Iron Transport Saint-Venant Equations Sinusoidal Pulse Unsteady flow
下载PDF
Numerical simulation on rotordynamic characteristics of annular seal under uniform and non-uniform flows 被引量:4
3
作者 吴大转 姜新阔 +2 位作者 初宁 武鹏 王乐勤 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1889-1897,共9页
Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are... Currently, the flow field of annular seals disturbed by the circular whirl motion of rotors is usually solved using computational fluid dynamics(CFD) to evaluate the five rotordynamic coefficients. The simulations are based on the traditional quasi-steady method. In this work, an improved quasi-steady method along with the transient method was presented to compute the rotordynamic coefficients of a long seal. By comparisons with experimental data, the shortcomings of quasi-steady methods have been identified. Then, the effects of non-uniform incoming flow on seal dynamic coefficients were studied by transient simulations. Results indicate that the long seal has large cross stiffness k and direct mass M which are not good for rotor stability, while the transient method is more suitable for the long seal for its excellent performance in predicting M. When the incoming flow is non-uniform, the stiffness coefficients vary with the eccentric directions. Based on the rotordynamic coefficients under uniform incoming flow, the linearized fluid force formulas, which can consider the effects of non-uniform incoming flow, have been presented and can well explain the varying-stiffness phenomenon. 展开更多
关键词 转子动力特性 非均匀流 数值模拟 密封 环形 计算流体动力学 动力特性系数 准稳态法
下载PDF
Pressure transient characteristics of non-uniform conductivity fractured wells in viscoelasticity polymer flooding based on oil-water two-phase flow
4
作者 Yang Wang Jia Zhang +2 位作者 Shi-Long Yang Ze-Xuan Xu Shi-Qing Cheng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期343-351,共9页
Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinni... Polymer flooding in fractured wells has been extensively applied in oilfields to enhance oil recovery.In contrast to water,polymer solution exhibits non-Newtonian and nonlinear behavior such as effects of shear thinning and shear thickening,polymer convection,diffusion,adsorption retention,inaccessible pore volume and reduced effective permeability.Meanwhile,the flux density and fracture conductivity along the hydraulic fracture are generally non-uniform due to the effects of pressure distribution,formation damage,and proppant breakage.In this paper,we present an oil-water two-phase flow model that captures these complex non-Newtonian and nonlinear behavior,and non-uniform fracture characteristics in fractured polymer flooding.The hydraulic fracture is firstly divided into two parts:high-conductivity fracture near the wellbore and low-conductivity fracture in the far-wellbore section.A hybrid grid system,including perpendicular bisection(PEBI)and Cartesian grid,is applied to discrete the partial differential flow equations,and the local grid refinement method is applied in the near-wellbore region to accurately calculate the pressure distribution and shear rate of polymer solution.The combination of polymer behavior characterizations and numerical flow simulations are applied,resulting in the calculation for the distribution of water saturation,polymer concentration and reservoir pressure.Compared with the polymer flooding well with uniform fracture conductivity,this non-uniform fracture conductivity model exhibits the larger pressure difference,and the shorter bilinear flow period due to the decrease of fracture flow ability in the far-wellbore section.The field case of the fall-off test demonstrates that the proposed method characterizes fracture characteristics more accurately,and yields fracture half-lengths that better match engineering reality,enabling a quantitative segmented characterization of the near-wellbore section with high fracture conductivity and the far-wellbore section with low fracture conductivity.The novelty of this paper is the analysis of pressure performances caused by the fracture dynamics and polymer rheology,as well as an analysis method that derives formation and fracture parameters based on the pressure and its derivative curves. 展开更多
关键词 Polymer flooding Non-Newtonian fluid non-uniform fracture conductivity Two-phase flow Pressure transient analysis
下载PDF
4D-Flow MRI在肥厚型心肌病左室流出道血流评估中的价值探索
5
作者 徐晶 陈秀玉 +3 位作者 尹刚 闫伟鹏 陆敏杰 赵世华 《磁共振成像》 CAS CSCD 北大核心 2024年第3期56-61,共6页
目的 探索四维血流(four-dimensional flow,4D-Flow)磁共振成像(magnetic resonance imaging,MRI)技术在左心室腔内应用的可行性。材料与方法 本研究为前瞻性、横断面研究,纳入2022年8月至2023年1月于我院接受心脏MRI检查的21例肥厚型... 目的 探索四维血流(four-dimensional flow,4D-Flow)磁共振成像(magnetic resonance imaging,MRI)技术在左心室腔内应用的可行性。材料与方法 本研究为前瞻性、横断面研究,纳入2022年8月至2023年1月于我院接受心脏MRI检查的21例肥厚型心肌病患者,采用3.0 T MRI扫描仪进行二维血流(tow-dimensional flow,2D-Flow)及4D-Flow成像,收集患者一周内进行的超声心动图检查结果。采用组内相关系数(inter-class correlation coefficient,ICC)、变异系数(coefficients of variation,COV)及Bland-Altman分析比较2D-Flow、4D-Flow评估左室流出道峰值流速的可重复性及一致性,并通过Pearson相关性分析探究二者与超声心动图测量结果的关系。结果 2D-Flow和4D-Flow观察者内/观察者间的ICC分别为0.999/0.999和0.995/0.992,COV分别为0.5%/0.5%和2.4%/2.6%。4D-Flow与超声心动图的测量结果呈中度相关,相关系数r值为0.574(P=0.006),但一致性较差,ICC为0.375(P=0.013)。2D-Flow与4D-Flow和超声心动图间无显著的一致性及相关性。结论 4D-Flow技术能够可视化心腔内血流模式,对左室流出道峰值流速的测量具有高度可重复性,且与超声心动图的测量结果具有显著的一致性。 展开更多
关键词 肥厚型心肌病 四维血流 二维血流 心脏磁共振 磁共振成像
下载PDF
基于Flow Simulation的某发动机涡轮压气机流场与效率分析
6
作者 邹春龙 饶纪元 +1 位作者 邓小雯 孙海明 《内燃机与配件》 2024年第11期13-15,共3页
涡轮机内部流场对涡轮增压器的性能和效率有着重要影响,采用SolidWorks Flow Simulation模块对某发动机涡轮压气机侧流场和压气效率分析。在六种不同空气体积流量工况下,体积流量为0.29时,压气机效率最高,达到80%左右。模型的建模和流... 涡轮机内部流场对涡轮增压器的性能和效率有着重要影响,采用SolidWorks Flow Simulation模块对某发动机涡轮压气机侧流场和压气效率分析。在六种不同空气体积流量工况下,体积流量为0.29时,压气机效率最高,达到80%左右。模型的建模和流体分析均在SolidWorks环境下,分析效率高,为涡轮增压器设计和优化提供了支撑。 展开更多
关键词 涡轮压气机 流场 效率
下载PDF
袋型阻尼密封动力学特性双控制体Bulk Flow模型
7
作者 桂佳强 李志刚 李军 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期26-38,共13页
为快速准确预测袋型阻尼密封泄漏特性和动力学特性,针对传统单控制体Bulk Flow模型预测精度低、无法预测交叉动力系数的问题,提出了袋型阻尼密封双控制体Bulk Flow模型和动力学特性数值预测方法,并开发了计算程序。首先,依据边界层理论... 为快速准确预测袋型阻尼密封泄漏特性和动力学特性,针对传统单控制体Bulk Flow模型预测精度低、无法预测交叉动力系数的问题,提出了袋型阻尼密封双控制体Bulk Flow模型和动力学特性数值预测方法,并开发了计算程序。首先,依据边界层理论,将袋型密封腔室划分为两个控制体,推导了控制体的连续性、周向动量和能量方程,引入Swamee-Jain和Takahashi方程,计算流体-壁面间和流体-流体间的周向黏性摩擦力;其次,采用牛顿-拉夫森算法和摄动分析法分别求解0阶和1阶控制方程,获得各刚度、阻尼动力特性系数;然后,通过与袋型阻尼密封泄漏量和动力特性系数的实验值、单控制体Bulk Flow模型和非定常计算流体动力学(CFD)数值结果进行比较,验证了模型和方法的准确性和可靠性;最后,研究了转子转速(10 000、15 000、20 000 r/min)和预旋比(0.067、0.724、0.997)对袋型阻尼密封动力学特性的影响。结果表明:所发展的模型和方法具有计算速度快、预测精度高(泄漏量预测误差小于6%,动力特性系数预测误差小于38%)的优点;转子转速和进口预旋的增大均会导致袋型阻尼密封有效阻尼显著减小,穿越频率显著增大,易诱发轴系失稳。 展开更多
关键词 袋型阻尼密封 泄漏特性 动力学特性 双控制体 Bulk flow模型
下载PDF
肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性研究
8
作者 胡勤勤 姜阳 +3 位作者 张玉龙 方玉 梁仁容 杨华 《中国中医急症》 2024年第6期982-985,989,共5页
目的探讨肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性。方法将118例肝硬化患者依据中医辨证分为肝气郁结证、湿热蕴结证、肝肾阴虚证、脾肾阳虚证、瘀血阻络证5个证型,所有患者均行门静脉4D flow MRI检查,统计不同证型肝硬... 目的探讨肝硬化患者4D flow MRI血流动力学参数与中医证型的相关性。方法将118例肝硬化患者依据中医辨证分为肝气郁结证、湿热蕴结证、肝肾阴虚证、脾肾阳虚证、瘀血阻络证5个证型,所有患者均行门静脉4D flow MRI检查,统计不同证型肝硬化患者分布情况,观察门静脉系统(门静脉主干、脾静脉、肠系膜上静脉)的血流动力学参数,包括血流量、流速、壁剪切力等,比较不同证型患者门静脉血流动力学参数差异。结果肝硬化代偿期以肝气郁结证、湿热蕴结证为主,肝硬化失代偿期以脾肾阳虚、瘀血络阻证为主;A级以肝气郁结证、湿热蕴结证为主,B、C级以瘀血络阻证为主。瘀血络阻证肝硬化患者门静脉主干及脾静脉血流量明显高于肝气郁结证、湿热蕴结证患者(P<0.05);脾肾阳虚证门静脉主干血流量明显高于肝气郁结证肝硬化患者(P<0.05);瘀血络阻证肝硬化患者门静脉主干流速及剪切力较肝气郁结证和湿热蕴结证低。结论肝硬化患者中医辨证分型与门静脉血流动力学参数具有一定相关性,4D flow MRI可为肝硬化的中医辨证提供血流动力学参考。 展开更多
关键词 肝硬化 4D flow MRI 血流动力学 中医证型
下载PDF
基于 Moldflow 的汽车中控台框架翘曲变形分析及优化
9
作者 刘巨保 黄建军 +3 位作者 杨明 李峰 张亮 查翔 《塑料工业》 CAS CSCD 北大核心 2024年第3期83-88,共6页
以某汽车中控台框架为研究对象,测量试模样品发现其翘曲变形量超过了装配要求。通过Moldflow软件模拟了该塑件实际的注塑过程,翘曲变形量的模拟值与实测平均值的最大误差为5.98%,发现该塑件翘曲变形的主要因素为冷却不均和收缩不均。本... 以某汽车中控台框架为研究对象,测量试模样品发现其翘曲变形量超过了装配要求。通过Moldflow软件模拟了该塑件实际的注塑过程,翘曲变形量的模拟值与实测平均值的最大误差为5.98%,发现该塑件翘曲变形的主要因素为冷却不均和收缩不均。本文在原物料中添加质量分数为25%的玻璃纤维以及优化工艺参数后,翘曲变形量的模拟值与初始方案相比降低了86.22%。试模验证表明,优化后的翘曲变形量模拟值与实测平均值的最大误差为4.35%,证明了Moldflow软件模拟分析的准确性。试模后各检测点的最大翘曲变形量降到了1.6 mm以下,较优化之前降低了80%以上,为类似大型复杂注塑件的翘曲变形分析及优化提供了思路。 展开更多
关键词 注塑成型 中控台框架 翘曲变形 模流分析 玻璃纤维
下载PDF
V Flow技术测量颈动脉壁面剪应力的一致性研究
10
作者 加依达尔·沙亚哈提 周琛云 陈曼琳 《四川医学》 CAS 2024年第1期28-34,共7页
目的评价血流向量成像(V Flow)技术在测量健康成年人颈动脉壁面剪应力(WSS)中的一致性。方法于2021年2月至2021年3月招募健康成年志愿者20人,由2名不同年资的超声医师使用配备V Flow功能的Mindray Resona 7超声仪和3~9 MHz线阵探头进行... 目的评价血流向量成像(V Flow)技术在测量健康成年人颈动脉壁面剪应力(WSS)中的一致性。方法于2021年2月至2021年3月招募健康成年志愿者20人,由2名不同年资的超声医师使用配备V Flow功能的Mindray Resona 7超声仪和3~9 MHz线阵探头进行双侧颈动脉扫查,分别采集双侧颈总动脉远段、颈总动脉分叉至颈内动脉起始部两段动脉的动态V Flow图像,测量两侧颈总动脉远段的近心端、远心端、分叉处及颈内动脉起始部的前、后壁的WSS,使用组内相关系数(ICC)和Bland-Altman图评估组内一致性及组间一致性。结果双侧颈动脉前、后壁的4个不同节段之间WSS值差异均有统计学意义(P<0.05)。高年资超声医师2次测量结果的一致性结果显示,左侧颈总动脉远段的远心端一致性极好(ICC 0.779),右侧颈总动脉远段的近心端(ICC 0.605)、远心端(ICC 0.585)、颈内动脉起始部(ICC 0.457)、左侧颈总动脉分叉处(ICC 0.606)及颈内动脉起始部(ICC 0.702)一致性均较好;不同年资超声医师的测量结果显示,仅右侧颈总动脉分叉处(ICC 0.486)及左侧颈总动脉远段的远心端(ICC 0.576)一致性较好。结论V Flow技术可显示不同位点间颈动脉WSS之间的差异,其组内一致性较好,但在不同年资超声医师间存在一定的差异。 展开更多
关键词 颈动脉 动脉粥样硬化 壁面剪应力 V flow成像技术
下载PDF
Evaluating the stability and volumetric flowback rate of proppant packs in hydraulic fractures using the lattice Boltzmann-discrete element coupling method 被引量:1
11
作者 Duo Wang Sanbai Li +2 位作者 Rui Wang Binhui Li Zhejun Pan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2052-2063,共12页
The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a... The stability and mobility of proppant packs in hydraulic fractures during hydrocarbon production are numerically investigated by the lattice Boltzmann-discrete element coupling method(LB-DEM).This study starts with a preliminary proppant settling test,from which a solid volume fraction of 0.575 is calibrated for the proppant pack in the fracture.In the established workflow to investigate proppant flowback,a displacement is applied to the fracture surfaces to compact the generated proppant pack as well as further mimicking proppant embedment under closure stress.When a pressure gradient is applied to drive the fluid-particle flow,a critical aperture-to-diameter ratio of 4 is observed,above which the proppant pack would collapse.The results also show that the volumetric proppant flowback rate increases quadratically with the fracture aperture,while a linear variation between the particle flux and the pressure gradient is exhibited for a fixed fracture aperture.The research outcome contributes towards an improved understanding of proppant flowback in hydraulic fractures,which also supports an optimised proppant size selection for hydraulic fracturing operations. 展开更多
关键词 Numerical simulation Hydraulic fracturing Proppant flowback Closure stress Particulate flow
下载PDF
A semi-analytical model for coupled flow in stress-sensitive multi-scale shale reservoirs with fractal characteristics 被引量:1
12
作者 Qian Zhang Wen-Dong Wang +4 位作者 Yu-Liang Su Wei Chen Zheng-Dong Lei Lei Li Yong-Mao Hao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期327-342,共16页
A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes... A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation. 展开更多
关键词 Multi-scale coupled flow Stress sensitivity Shale oil Micro-scale effect Fractal theory
下载PDF
基于Moldflow软件对薄壁件某塑料喷嘴的注塑方案优化研究
13
作者 袁志华 符烜赫 袁博 《机械工程师》 2024年第3期14-17,共4页
喷嘴注塑产品的质量和性能很大程度上由注塑方案和工艺参数所决定,不当的注塑方案和工艺参数会导致充填不足、熔接线过多、翘曲变形量大等问题。为了可以减少生产周期,节约生产成本,利用三维软件UG对喷嘴进行建模,基于模流分析软件Moldf... 喷嘴注塑产品的质量和性能很大程度上由注塑方案和工艺参数所决定,不当的注塑方案和工艺参数会导致充填不足、熔接线过多、翘曲变形量大等问题。为了可以减少生产周期,节约生产成本,利用三维软件UG对喷嘴进行建模,基于模流分析软件Moldflow软件对喷嘴注塑产品进行分析和优化,通过比较点浇口和侧浇口两种方案的分析结果,最终确定该产品点浇口的方案更好。并通过设计正交实验,得到优化后的工艺参数。 展开更多
关键词 喷嘴 MOLDflow 模流分析 浇口位置 正交优化
下载PDF
An inverse analysis of fluid flow through granular media using differentiable lattice Boltzmann method 被引量:1
14
作者 Qiuyu Wang Krishna Kumar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2077-2090,共14页
This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeabi... This study presents a method for the inverse analysis of fluid flow problems.The focus is put on accurately determining boundary conditions and characterizing the physical properties of granular media,such as permeability,and fluid components,like viscosity.The primary aim is to deduce either constant pressure head or pressure profiles,given the known velocity field at a steady-state flow through a conduit containing obstacles,including walls,spheres,and grains.The lattice Boltzmann method(LBM)combined with automatic differentiation(AD)(AD-LBM)is employed,with the help of the GPU-capable Taichi programming language.A lightweight tape is used to generate gradients for the entire LBM simulation,enabling end-to-end backpropagation.Our AD-LBM approach accurately estimates the boundary conditions for complex flow paths in porous media,leading to observed steady-state velocity fields and deriving macro-scale permeability and fluid viscosity.The method demonstrates significant advantages in terms of prediction accuracy and computational efficiency,making it a powerful tool for solving inverse fluid flow problems in various applications. 展开更多
关键词 Inverse problem Fluid flow Granular media Automatic differentiation(AD) Lattice Boltzmann method(LBM)
下载PDF
基于FLOW3D的集成式水下基盘泥沙冲淤三维数值模拟
15
作者 薛强 高博远 +3 位作者 段辰宇 张子涵 陈同庆 张庆河 《水道港口》 2024年第3期333-338,414,共7页
泥面下集成式水下基盘是为开采渤海通航区等海域油气资源而提出的新型基盘,其基坑周围局部冲淤是工程实践关注的问题之一。基于不可压缩粘性流体运动的Navier-Stokes方程建立泥面下集成式水下基盘基坑周围三维水动力数学模型,对不同粒... 泥面下集成式水下基盘是为开采渤海通航区等海域油气资源而提出的新型基盘,其基坑周围局部冲淤是工程实践关注的问题之一。基于不可压缩粘性流体运动的Navier-Stokes方程建立泥面下集成式水下基盘基坑周围三维水动力数学模型,对不同粒径和不同流速情况下的局部冲淤进行了模拟。结果表明:泥沙粒径为0.005 mm时,由于泥沙较难起动,基坑附近局部冲淤较小。粒径分别为0.05 mm和0.1 mm时,在典型流速作用下,基盘附近可分别形成1 m左右和4 m左右的淤积。 展开更多
关键词 水下基盘 数值模拟 局部冲淤 三维水动力 冲刷 flow3D
下载PDF
基于MoldFlow太阳能储能系统下盖成型模拟及应用
16
作者 周先保 胡清根 傅海勇 《模具制造》 2024年第2期36-38,共3页
以太阳能储能系统下盖模流分析为例,反复修改流道和浇口截面尺寸与长度以及主流道位置,确定流道尺寸。运用MoldFlow对设计好的流道进行充填分析,以使成型达到流动平衡,并进行冷却、翘曲分析,预测成型缺陷,提出解决措施,为模具设计提供... 以太阳能储能系统下盖模流分析为例,反复修改流道和浇口截面尺寸与长度以及主流道位置,确定流道尺寸。运用MoldFlow对设计好的流道进行充填分析,以使成型达到流动平衡,并进行冷却、翘曲分析,预测成型缺陷,提出解决措施,为模具设计提供浇注系统和冷却系统方案和注射成型工艺参数,并应用于模具设计和实际生产。 展开更多
关键词 太阳能储能系统下盖 流动平衡 成型缺陷
下载PDF
Effect of non-uniform swelling on coal multiphysics during gas injection: The triangle approach
17
作者 Yifan Huang Jishan Liu +2 位作者 Yaoyao Zhao Derek Elsworth Yee-Kwong Leong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1362-1372,共11页
In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its in... In current dual porosity/permeability models,there exists a fundamental assumption that the adsorption-induced swelling is distributed uniformly within the representative elementary volume (REV),irrespective of its internal structures and transient processes.However,both internal structures and transient processes can lead to the non-uniform swelling.In this study,we hypothesize that the non-uniform swelling is responsible for why coal permeability in experimental measurements is not only controlled by the effective stress but also is affected by the adsorption-induced swelling.We propose a concept of the swelling triangle composed of swelling paths to characterize the evolution of the non-uniform swelling and serve as a core link in coupled multiphysics.A swelling path is determined by a dimensionless volumetric ratio and a dimensionless swelling ratio.Different swelling paths have the same start and end point,and each swelling path represents a unique swelling case.The swelling path as the diagonal of the triangle represents the case of the uniform swelling while that as the two perpendicular boundaries represents the case of the localized swelling.The paths of all intermediate cases populate inside the triangle.The corresponding relations between the swelling path and the response of coal multiphysics are established by a non-uniform swelling coefficient.We define this method as the triangle approach and corresponding models as swelling path-based ones.The proposed concept and models are verified against a long-term experimental measurement of permeability and strains under constant effective stress.Our results demonstrate that during gas injection,coal multiphysics responses have a close dependence on the swelling path,and that in both future experiments and field predictions,this dependence must be considered. 展开更多
关键词 Transient process HETEROGENEITY Swelling triangle Swelling path non-uniform swelling coefficient
下载PDF
Analysis and experimental study on resistance-increasing behavior of composite high efficiency autonomous inflow control device
18
作者 Liang-Liang Dong Yu-Lin Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1290-1304,共15页
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th... Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production. 展开更多
关键词 Water control flow separation flow resistance-increasing AICD device Simulation and experiment
下载PDF
Performance characteristics of the airlift pump under vertical solid-water-gas flow conditions for conveying centimetric-sized coal particles
19
作者 Parviz Enany Carsten Drebenshtedt 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期53-66,共14页
In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graini... In this study,the installation of an airlift pump with inner diameter of 102 mm and length of 5.64 m was utilized to consider the conveying process of non-spherical coal particles with density of 1340 kg/m3 and graining 25-44.5 mm.The test results revealed that the magnitude of increase in the solid transport rate due to the changes in the three tested parameters between compressed air velocity,submergence ratio,and feeding coal possibility was not the same,which are stand in range of 20%,75%,and 40%,respectively.Hence,creating the optimal airlift pump performance is highly dependent on submergence ratio.More importantly,we measured the solid volume fraction using the method of one-way valves in order to minimize the disadvantages of conventional devices,such as fast speed camera and conductivity ring sensor.The results confirmed that the volume fraction of the solid phase in the transfer process was always less than 12%.To validate present experimental data,the existing empirical correlations together with the theoretical equations related to the multiphase flow was used.The overall agreement between the theory and experimental solid delivery results was particularly good instead of the first stage of conveying process.This drawback can be corrected by omitting the role of friction and shear stress at low air income velocity.It was also found that the model developed by Kalenik failed to predict the performance of our airlift operation in terms of the mass flow rate of the coal particles. 展开更多
关键词 Vertical velocity Non-spherical particle Submergence ratio Three-phase flow Churn flow Superficial velocity
下载PDF
Coupled CFD-DEM Numerical Simulation of the Interaction of a Flow-Transported Rag with a Solid Cylinder
20
作者 Yun Ren Lianzheng Zhao +2 位作者 Xiaofan Mo Shuihua Zheng Youdong Yang 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1593-1609,共17页
A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hyb... A coupled Computational Fluid Dynamics-Discrete Element Method(CFD-DEM)approach is used to calculate the interaction of a flexible rag transported by a fluid current with a fixed solid cylinder.More specifically a hybrid Eulerian-Lagrangian approach is used with the rag being modeled as a set of interconnected particles.The influence of various parameters is considered,namely the inlet velocity(1.5,2.0,and 2.5 m/s,respectively),the angle formed by the initially straight rag with the flow direction(45°,60°and 90°,respectively),and the inlet position(90,100,and 110 mm,respectively).The results show that the flow rate has a significant impact on the permeability of the rag.The higher the flow rate,the higher the permeability and the rag speed difference.The angle has a minor effect on rag permeability,with 45°being the most favorable angle for permeability.The inlet position has a small impact on rag permeability,while reducing the initial distance between the rag an the cylinder makes it easier for rags to pass through. 展开更多
关键词 RAG flow around cylinder flow characteristics numerical simulation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部