期刊文献+
共找到310篇文章
< 1 2 16 >
每页显示 20 50 100
Evaluation of ultra-fine grained tungsten under transient high heat flux by high-intensity pulsed ion beam 被引量:2
1
作者 谈军 周张健 +4 位作者 朱小鹏 郭双全 屈丹丹 雷明凯 葛昌纯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1081-1085,共5页
Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of... Pure tungsten, oxide dispersion strengthened tungsten and carbide dispersion strengthened tungsten were fabricated by high-energy ball milling and spark plasma sintering process. In order to evaluate the properties of the tungsten alloys under transient high heat flues, four tungsten samples with different grain sizes were tested by high-intensity pulsed ion beam with a heat flux as high as 160 MW/(m^2·s^-1/2). Compared with the commercial tungsten, the surface modification of the oxide dispersion strengthened tungsten by high-intensity pulsed ion beam is completely different. The oxide dispersion strengthened tungsten shows inferior thermal shock response due to the low melting point second phase of Ti and Y2O3, which results in the surface melting, boiling bubbles and cracking. While the carbide dispersion strengthened tungsten shows better thermal shock response than the commercial tungsten. 展开更多
关键词 TUNGSTEN tungsten alloy ultra-fine grain surface effects thermal shock transient high heat flux
下载PDF
Influence of Late Springtime Surface Sensible Heat Flux Anomalies over the Tibetan and Iranian Plateaus on the Location of the South Asian High in Early Summer 被引量:8
2
作者 Haoxin ZHANG Weiping LI Weijing LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第1期93-103,共11页
Variation in the location of the South Asian High (SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau (TP) and the Iranian Plateau (IP). Based on observationa... Variation in the location of the South Asian High (SAH) in early boreal summer is strongly influenced by elevated surface heating from the Tibetan Plateau (TP) and the Iranian Plateau (IP). Based on observational and ERA-Interim data, diagnostic analyses reveal that the interannual northwestward-southeastwaxd (NW-SE) shift of the SAH in June is more closely correlated with the synergistic effect of concurrent surface thermal anomalies over the TP and IP than with each single surface thermal anomaly over either plateau from the preceding May. Concurrent surface thermal anomalies over these two plateaus in May are characterized by a negative correlation between sensible heat flux over most parts of the TP (TPSH) and IP (IPSH). This anomaly pattern can persist till June and influences the NW-SE shift of the SAH in June through the release of latent heat (LH) over northeastern India. When the IPSH is stronger (weaker) and the TPSH is weaker (stronger) than normal in May, an anomalous cyclone (anticyclone) appears over northern India at 850 hPa, which is accompanied by the ascent (descent) of air and anomalous convergence (divergence) of moisture flux in May and June. Therefore, the LH release over northeastern India is strengthened (weakened) and the vertical gradient of apparent heat source is decreased (increased) in the upper troposphere, which is responsible for the northwestward (southeastward) shift of the SAH in June. 展开更多
关键词 Tibetan Plateau Iranian Plateau surface sensible heat flux latent heat of condensation South Asian high
下载PDF
Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads 被引量:3
3
作者 陈蕾 练友运 刘翔 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第3期278-282,共5页
In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequent... In order to transfer the heat from the armor to the coolant, tungsten has to be connected with a copper heat sink. The joint technology is the most critical issue for manufacturing plasma facing components. Consequently, the reliability of the joints should be verified by a great number of high-heat-flux (HHF) tests to simulate the real load conditions. W/Cu brazed joint technology with sliver free filler metal CuMnNi has been developed at Southwestern Institute of Physics (SWIP). Screening and thermal fatigue tests of one small-scale fiat tile W/CuCrZr mockup were performed on a 60 kW electron-beam Material testing scenario (EMS-60) constructed recently at SWIP. The module successfully survived screening test with the absorbed power density (Pabs) of 2 MW/m2 to 10 MW/m2 and the following 1000 cycles at Pabs of 7.2 MW/m2 without hot spots and overheating zones during the whole test campaign. Metallurgy and SEM observations did not find any cracks at both sides and the interface, indicating a good bonding of W and CuCrZr alloy. In addition, finite element simulations by ANSYS 12.0 under experimental load conditions were performed and compared with experimental results. 展开更多
关键词 BRAZING high heat flux finite element modeling
下载PDF
Radial Non-uniformity Index Research on High-density,High-flux CFB Riser with Stratified Injection 被引量:3
4
作者 Geng Qiang Wang Lu +3 位作者 Li Zhichao Li Chunyi Liu Yibin You Xinghua 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2012年第4期64-72,共9页
A high-density, high-flux circulating fluidized bed (CFB) riser (100 mm in ID and 10.614 m in height) was ap- plied in a wide range of operating conditions (with solid fluxes up to 400 kg/m2s and superficial gas ... A high-density, high-flux circulating fluidized bed (CFB) riser (100 mm in ID and 10.614 m in height) was ap- plied in a wide range of operating conditions (with solid fluxes up to 400 kg/m2s and superficial gas velocities up to 12 m/s) to examine its radial non-uniformity dynamics. The solids holdup was determined through the use of a fiber-optic probe at 11 axial levels. The results indicated that under all operating conditions, the high superficial gas velocity and low solid flux- es maintained a low radial non-uniformity index (RNI). The high-density/flux CFB riser had several unique characteristics, so that the peak of the radial solids holdup profile occurred at a position with r/R=0.8. The RNI and solids holdup at the cross-sectional position had a good logarithmic relationship at the low-density condition (with a mean solids holdup of 〈0.2), and the RNI decreased when the mean solids holdup exceeded 0.2. Investigation of the dynamics of stratified injec- tion revealed that the feed ratio had an important effect on G, and on solids holdup distribution. A novel "〈" shaped axial solids holdup profile was found. Gs decreased sharply when the up-flow feed ratio exceeded 0.5, and RNI was lowest when the up-flow feed ratio was 1. 展开更多
关键词 fluidization high density/flux CFB riser radial non-uniformity index stratified injection feed ratio
下载PDF
Heat transfer in boundary layer stagnation-point flow towards a shrinking sheet with non-uniform heat flux 被引量:1
5
作者 Krishnendu Bhattacharyya 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期328-333,共6页
In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct pow... In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting. 展开更多
关键词 non-uniform heat flux heat transfer stagnation-point flow shrinking sheet
下载PDF
High Heat Flux Testing of B_4C/Cu and SiC/Cu Functionally Graded Materials Simulated by Laser and Electron Beam 被引量:4
6
作者 刘翔 谌继明 +3 位作者 张斧 许增裕 葛昌纯 李江涛 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第1期1171-1176,共6页
B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the si... B4C, SiC and C, Cu functionally graded-materials (FGMs) have been developed by plasma spraying and hot pressing. Their high-heat flux properties have been investigated by high energy laser and electron beam for the simulation of plasma disruption process of the future fusion reactors, And a study on eroded products of B4C/Cu FGM under transient thermal load of electron beam was performed. In the experiment, SEM and EDS analysis indicated that B4C and SiC were decomposed, carbon was preferentially evaporated under high thermal load, and a part of Si and Cu were melted, in addition, the splash of melted metal and the particle emission of brittle destruction were also found. Different erosive behaviors of carbon-based materials (CBMs) caused by laser and electron beam were also discussed. 展开更多
关键词 SIC high heat flux Testing of B4C/Cu and SiC/Cu Functionally Graded Materials Simulated by Laser and Electron Beam CU
下载PDF
Hydrothermal analysis of non-Newtonian fluid flow(blood)through the circular tube under prescrib e d non-uniform wall heat flux 被引量:1
7
作者 Shahin Faghiri Shahin Akbari +1 位作者 Mohammad Behshad Shafii Kh.Hosseinzadeh 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第4期275-285,共11页
The present article aims to investigate the Graetz-Nusselt problem for blood as a non-Newtonian fluid obeying the power-law constitutive equation and flowing inside the axisymmetric tube subjected to nonuniform surfac... The present article aims to investigate the Graetz-Nusselt problem for blood as a non-Newtonian fluid obeying the power-law constitutive equation and flowing inside the axisymmetric tube subjected to nonuniform surface heat flux.After the flow field is determined by solving the continuity and the momentum equations,the energy equation is handled by employing the separation of variables method.The resulting Eigen functions and Eigen values are numerically calculated using MATLAB built-in solver BVP4C.The analysis is first conducted for the situation of constant heat flux and subsequently generalized to apply to the case of sinusoidal variation of wall heat flux along the tube length,using Duhamel’s Theorem.Furthermore,an approximate analytic solution is determined,employing an integral approach to solve the boundary layer equations.With respect to the comparison,the results of approximate solution display acceptable congruence with those of exact solution with an average error of 7.4%.Interestingly,with decreasing the power-law index,the discrepancy between the two presented methods significantly reduces.Eventually,the influences of the controlling parameters such as surface heat flux and power-law index on the non-Newtonian fluid flow’s thermal characteristics and structure are elaborately discussed.It is found that switching from constant wall heat flux to non-uniform wall heat flux that sinusoidally varies along the tube length significantly improves the simulation’s accuracy due to the better characterization of the heat transport phenomenon in non-Newtonian fluid flow through the tube.In the presence of sinusoidally varying wall heat flux with an amplitude of 200 W/m 2 and when the power-law index is 0.25,the maximum arterial wall temperature is found to be about 311.56 K. 展开更多
关键词 Non-newtonian fluid Power-law model non-uniform heat flux Analytical solution
下载PDF
Manufacturing and High Heat Flux Testing of Brazed Flat-Type W/CuCrZr Plasma Facing Components 被引量:2
8
作者 练友运 刘翔 +4 位作者 封范 陈蕾 程正奎 王金 谌继明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第2期184-189,共6页
Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was ... Water-cooled flat-type W/Cu Cr Zr plasma facing components with an interlayer of oxygen-free copper(OFC) have been developed by using vacuum brazing route.The OFC layer for the accommodation of thermal stresses was cast onto the surface of W at a temperature range of 1150oC-1200 oC in a vacuum furnace.The W/OFC cast tiles were vacuum brazed to a Cu Cr Zr heat sink at 940 oC using the silver-free filler material Cu Mn Si Cr.The microstructure,bonding strength,and high heat flux properties of the brazed W/Cu Cr Zr joint samples were investigated.The W/Cu joint exhibits an average tensile strength of 134 MPa,which is about the same strength as pure annealed copper.High heat flux tests were performed in the electron beam facility EMS-60.Experimental results indicated that the brazed W/Cu Cr Zr mock-up experienced screening tests of up to 15 MW/m^2 and cyclic tests of 9 MW/m^2 for 1000 cycles without visible damage. 展开更多
关键词 W/CuCrZr mock-up vacuum casting vacuum brazing high heat flux tests
下载PDF
Microchannel cooling technique for dissipating high heat flux on W/Cu flat-type mock-up for EAST divertor
9
作者 Mingxiang LU Le HAN +5 位作者 Qi ZHAO Juncheng QIU Jianhong ZHOU Dinghua HU Nanyu MOU Xuemei CHEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第9期134-144,共11页
As an important component of tokamaks,the divertor is mainly responsible for extracting heat and helium ash,and the targets of the divertor need to withstand high heat flux of 10 MW m-2 for steady-state operation.In t... As an important component of tokamaks,the divertor is mainly responsible for extracting heat and helium ash,and the targets of the divertor need to withstand high heat flux of 10 MW m-2 for steady-state operation.In this study,we proposed a new strategy,using microchannel cooling technology to remove high heat load on the targets of the divertor.The results demonstrated that the microchannel-based W/Cu flat-type mock-up successfully withstood the thermal fatigue test of 1000 cycles at 10 MW m^(-2)with cooling water of 26 l min^(-1),30°C(inlet),0.8 MPa(inlet),15 s power on and 15 s dwell time;the maximum temperature on the heat-loaded surface(W surface)of the mock-up was 493°C,which is much lower than the recrystallization temperature of W(1200°C).Moreover,no occurrence of macrocrack and‘hot spot’at the W surface,as well as no detachment of W/Cu tiles were observed during the thermal fatigue testing.These results indicate that microchannel cooling technology is an efflcient method for removing the heat load of the divertor at a low flow rate.The present study offers a promising solution to replace the monoblock design for the EAST divertor. 展开更多
关键词 MICROCHANNEL DIVERTOR flat-type high heat flux test EAST
下载PDF
Evaluation of The Thermal Performance of Multi-Element Doped Graphite under Steady-State High Heat Flux
10
作者 陈俊凌 李建刚 +3 位作者 野田信明 久保田雄辅 郭全贵 裘亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2002年第4期1387-1394,共8页
Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat ... Multi-element doped graphite, GBST1308 has been developed as a plasma facing material (PFM) for high heat flux components of the HT-7U device. The thermal performance of the material under steady-state (SS) high heat flux was evaluated under actively cooling conditions, the specimens were mechanically joined to copper heat sink with supercarbon sheet as a compliant layer between the interfaces. The experiments have been performed in a facility of ACT (actively cooling test stand) with a 100 kW electron gun in order to test the suitability and the loading limit of such materials. The surface temperature and bulk temperature distribution of the specimens were investigated. The experimental results are very encouraging that when heat flux is not more than 6 MW/m2, the surface temperature of GBST1308 is less than 1000℃, which is the lowest, compared with IG-430U and even with CX-2002U (CFC); The primary results indicate that the mechanically-joined material system by such a proper design as thin tile, super compliant layer, GBST as a PFM and copper-alloy heat sink, can be used as divertor plates for HT-7U in the first phase. 展开更多
关键词 doped graphite heat sink compliant layer steady state high heat flux surface temperature bulk temperature distribution
下载PDF
SEASONAL PERSISTENCE OF THE WEST PACIFIC SUBTROPICAL HIGH AND ITS RELATIONSHIP WITH THE SURFACE HEAT FLUX ANOMALY
11
作者 严蜜 钱永甫 《Journal of Tropical Meteorology》 SCIE 2010年第1期42-50,共9页
This paper investigates the interannual variation of the West Pacific Subtropical High(WPSH) intensity based on the data compiled by the Chinese National Climate Center.Monthly reanalysis data from National Centers fo... This paper investigates the interannual variation of the West Pacific Subtropical High(WPSH) intensity based on the data compiled by the Chinese National Climate Center.Monthly reanalysis data from National Centers for Environmental Prediction and National Center for Atmospheric Research(NCEP/NCAR) are also used to study the lead-lag relationship between WPSH intensity and surface heat flux anomalies.The three major findings are as follows:First,WPSH intensity presents good seasonal persistence,especially from winter to the ensuing summer.Persistence is more significant after 1977,especially from spring to summer,and from summer to autumn;persistence of anticyclonic anomalies are significantly better than cyclonic anomalies.Second,surface heat flux tends to present opposite anomalous patterns between the strong and weak years of the WPSH intensity,which is especially valid at the latent heat flux over the ocean.Simultaneous correlations between surface heat flux and WPSH intensity in each of the seasons are marked by similar key areas.Finally,surface heat flux from the preceding winter of a strong summer WPSH is quite similar to strong spring WPSH,but the positive anomalies over the northwest Pacific and south of Japan are notably stronger.The situations in the weak years are similar except for those over the northwest Pacific:winter surface heat flux shows negative anomalies for a weak spring WPSH,but positive anomalies for a weak summer WPSH.It is suggested that surface heat flux in the previous winter plays an important role in maintaining the WPSH intensity in the ensuing spring and summer. 展开更多
关键词 West Pacific Subtropical high surface heat flux seasonal persistence
下载PDF
Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System
12
作者 陶玲 胡纯栋 谢远来 《Plasma Science and Technology》 SCIE EI CAS CSCD 2014年第5期512-520,共9页
In order to realize steady-state operation of the neutral beam injection(NBI) system with high beam energy,an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside hig... In order to realize steady-state operation of the neutral beam injection(NBI) system with high beam energy,an accurate thermal analysis and a prediction about working conditions of heat-removal structures inside high-heat-flux(HHF) components in the system are key issues.In this paper,taking the HHF ion dump with swirl tubes in NBI system as an example,an accurate thermal dynamic simulation method based on computational fluid dynamics(CFD) and the finite volume method is presented to predict performance of the HHF component.In this simulation method,the Eulerian multiphase method together with some empirical corrections about the inter-phase transfer model and the wall heat flux partitioning model are considered to describe the subcooled boiling.The reliability of the proposed method is validated by an experimental example with subcooled boiling inside swirl tube.The proposed method provides an important tool for the refined thermal and flow dynamic analysis of HHF components,and can be extended to study the thermal design of other complex HHF engineering structures in a straightforward way.The simulation results also verify that the swirl tube is a promising heat removing structure for the HHF components of the NBI system. 展开更多
关键词 neutral beam injection system swirl tube subcooled boiling computational fluid dynamics high-heat-flux component ion dump
下载PDF
Preliminary High Heat Flux Tests of Small-Scale Be/Cu Mock-Ups
13
作者 LIU Xiang ZHANG Fu CHEN Jiming ZHANG Nianman PAN Chuanhong 《Southwestern Institute of Physics Annual Report》 2005年第1期115-116,共2页
China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is ... China, as one of the members of ITER (international thermonuclear experimental reactor) project, one of the most important construction tasks is the fabrication of the first wall panel and shield blankets, which is the key engineering technology of ITER construction and might be one of the crucial issues of the future reactor too. Since 2004, an associated research team including Southwestern Institute of Physics ( SWIP ), Ninxia Non-ferrous Metal Co. Itd and Chinese Institute of Engineering Physics, as well as Nuclear Power Institute of China has been established. Up to now, several series of interlayer for hot isostatic press ( HIP ) connection of beryllium and CuCrZr alloy have been tested. They are titanium film or coating, Cu coating and Al or AISiMg alloy etc. The bonding strength (tensile or shear strength ) of HIPed Be/Cu joints is up to 100 MPa. 展开更多
关键词 ITER high heat flux tests Be/Cu mock-ups
下载PDF
SIMULATION OF TEMPERATURE FIELD IN ULTRA-HIGH FREQUENCY INDUCTION HEATING AND VERIFICATION 被引量:2
14
作者 李奇林 徐九华 苏宏华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期155-161,共7页
An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of... An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors. 展开更多
关键词 ultra-high frequency induction heating temperature field flux 2Dsoftware
下载PDF
卫星有源相控阵高热流微尺度器件热设计与验证
15
作者 卢威 李进 +3 位作者 周傲松 陈腾博 智国平 邹雷 《航天器环境工程》 CSCD 2024年第5期574-580,共7页
为解决卫星有源相控阵高热流微尺度器件散热和热试验验证难题,首先,提出T/R模块低温共烧陶瓷热设计优化方案,选择热通孔面积比为11.4%,并建立尺度比为800∶1的跨尺度热模型;其次,进行地面常压热平衡试验,利用红外热像仪测量器件温度;再... 为解决卫星有源相控阵高热流微尺度器件散热和热试验验证难题,首先,提出T/R模块低温共烧陶瓷热设计优化方案,选择热通孔面积比为11.4%,并建立尺度比为800∶1的跨尺度热模型;其次,进行地面常压热平衡试验,利用红外热像仪测量器件温度;再基于热参数敏感性分析方法评估自然对流、热辐射和热传导有关参数对器件温度的影响,结果表明:对于特征长度为600μm的典型器件,接触热导对散热影响最大,而自然对流和热辐射影响均低于2%;基于常压热平衡试验数据修正热模型后的仿真与试验数据吻合良好,最大温度偏差1.7℃;高热流微尺度器件接触热导为16200 W/(m^(2)·K),预示真空下器件的最高温度为73.2℃,满足工程要求。研究结果可为卫星高热流微尺度器件热设计和验证提供参考。 展开更多
关键词 高热流微尺度器件 T/R模块 热设计 自然对流
下载PDF
超高参数火箭煤油在小通道圆管内的流动换热特性
16
作者 刘朝晖 陈雪娇 蒋榕培 《火箭推进》 CAS 北大核心 2024年第5期114-121,共8页
火箭煤油再生冷却过程具有高压、高温、高热流密度和高质量流速等特点。在超高参数条件下,采用低电压大电流电加热方法模拟火箭发动机推力室壁面热环境,在高温合金钢∅2 mm×0.5 mm圆管内研究了火箭煤油的流动换热特性。参数范围为压... 火箭煤油再生冷却过程具有高压、高温、高热流密度和高质量流速等特点。在超高参数条件下,采用低电压大电流电加热方法模拟火箭发动机推力室壁面热环境,在高温合金钢∅2 mm×0.5 mm圆管内研究了火箭煤油的流动换热特性。参数范围为压力25~65 MPa,质量流速8500~51000 kg/(m^(2)·s),流体温度常温为~500℃,热流密度最高为35 MW/m^(2)。研究表明:在所测试条件下,火箭煤油在小通道圆管内处于单相液态强制对流换热机制;换热性能主要受到流体温度和质量流速的影响;流体温度增加,换热系数增加;质量流速增加,换热系数增加;压力在25~65 MPa范围内对换热性能无显著影响;热流密度增加,内壁温显著增加,但热流密度变化对换热系数无显著影响;受入口强化换热效应的影响,换热系数增加,热流密度越高,入口效应越明显。超高参数尤其是超高压力条件下的火箭煤油换热特性,为火箭煤油再生冷却技术应用提供参考。 展开更多
关键词 再生冷却 火箭煤油 流动换热 超高参数 小通道 高热流密度
下载PDF
脱庚烷塔分离效果差的原因分析及改进措施
17
作者 李世伟 《石油化工技术与经济》 CAS 2024年第5期32-36,共5页
异构化装置脱庚烷塔主要任务是分离C 8芳烃中的C 6~C 7馏分,为二甲苯装置提供原料。脱庚烷塔分离效果差,造成C 8芳烃损失,其主要原因一是外购混合二甲苯带有溶解氧,引起烯烃在进料换热器壳层升温后发生聚合,生成黏稠产物,导致脱庚烷塔... 异构化装置脱庚烷塔主要任务是分离C 8芳烃中的C 6~C 7馏分,为二甲苯装置提供原料。脱庚烷塔分离效果差,造成C 8芳烃损失,其主要原因一是外购混合二甲苯带有溶解氧,引起烯烃在进料换热器壳层升温后发生聚合,生成黏稠产物,导致脱庚烷塔进料温度低;二是高通量管换热器E-707基管表面多孔涂层覆有垢层,导致换热效果下降,换热能力不足。经过流程优化和更换换热器后,脱庚烷塔分离效果提升明显,塔顶C 8芳烃质量分数由10.00%降至1.34%,塔底苯质量分数低于0.01%,甲苯质量分数由1.16%降至0.38%。 展开更多
关键词 脱庚烷塔 结焦 分离效果 高通量管换热器
下载PDF
基于热电堆的微型热流传感器制备及性能研究 被引量:1
18
作者 李晓芬 张香香 谭秋林 《传感器与微系统》 CSCD 北大核心 2024年第5期31-34,共4页
航空发动机内部温度和热辐射的不均匀分布可能导致叶片表面出现热点,引起叶尖等区域的材料损坏。因此,监测单位时间内通过叶片表面的热量十分重要。热电堆型热流传感器以其测量范围广、稳定性好、精度高等优点,成为监测高温环境热流参... 航空发动机内部温度和热辐射的不均匀分布可能导致叶片表面出现热点,引起叶尖等区域的材料损坏。因此,监测单位时间内通过叶片表面的热量十分重要。热电堆型热流传感器以其测量范围广、稳定性好、精度高等优点,成为监测高温环境热流参数的常用方法。本文采用丝网印刷和高温烧结工艺,在10 mm×10 mm×1 mm的99%Al_(2)O_(3)陶瓷基片上制备了Pt-Rh10/Pt热电堆型热流传感器,并搭建了热流实验平台对传感器进行测试。结果表明,该热流传感器在1 019.4℃的高温环境下,所测热流密度为179.67 kW/m^(2),输出电压为0.462 3 mV。经过3次热循环测试可知,该热流传感器的重复性偏差小于5%,具有较好的重复性。 展开更多
关键词 高温环境 热流监测 热阻层 热电效应 热流传感器
下载PDF
高焓流场球头外形气动热试验研究
19
作者 田润雨 龚红明 +2 位作者 常雨 刘济春 江涛 《空气动力学学报》 CSCD 北大核心 2024年第1期1-12,I0001,共13页
再入地球大气层时,飞行器的再入速度极高,面临严重的气动加热问题。为了研究高焓流动导致的热化学非平衡现象,在高焓膨胀风洞FD-14X中开展了球头外形的热流测量试验以及CFD仿真模拟。FD-14X为中国空气动力研究与发展中心新建成的高焓膨... 再入地球大气层时,飞行器的再入速度极高,面临严重的气动加热问题。为了研究高焓流动导致的热化学非平衡现象,在高焓膨胀风洞FD-14X中开展了球头外形的热流测量试验以及CFD仿真模拟。FD-14X为中国空气动力研究与发展中心新建成的高焓膨胀风洞,速度模拟能力达到第二宇宙速度,总温模拟能力超过10000 K,能够产生总焓70 MJ/kg的试验气体。试验来流总焓16.9~63.5 MJ/kg,球头直径20~50 mm,流场采用自发光拍照,同时CFD仿真采用Park双温非平衡模型计算球头绕流流场。试验与仿真结果表明:来流总焓大于5 MJ/kg时,球头绕流场存在显著的热化学非平衡现象;304钢模型壁面在来流总焓小于20 MJ/kg时表现为非催化壁面特性,在来流总焓大于30 MJ/kg时表现为催化壁面特性;当球头表面镀氧化锆膜、来流总焓49.5 MJ/kg时,球头壁面表现为非催化壁面特性。 展开更多
关键词 高焓膨胀风洞 球头 高温效应 热化学非平衡 壁面催化/非催化特性 热流
下载PDF
HIGH EFFICIENCY COOLING TECHNOLOGY BASED ON GREEN MANUFACTURING 被引量:1
20
作者 安庆龙 傅玉灿 +3 位作者 徐九华 王云峰 任守良 徐鸿钧 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2005年第3期230-233,共4页
Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficienc... Green manufacturing (GM) and high efficiency machining technology are inevitable trends in the field of advanced manufacturing of the 21st century. To ensure green and high-efficiency machining, a new high efficiency cooling technology-cryogenic pneumatic mist jet impinging cooling (CPMJI) technology is presented. For obtaining the best cooling effect, a little quantity of coolant is carried by high speed cryogenic air (-20 C ) and reaches the machining zone in the form of mist jet to enhance heat transfer. Experimental results indicate that under the conditions of 40 m/s in the jet impinging speed and 10 mm in the jet impinging distance, the critical heat flux(CHF) nearly reaches 6× 10^7 W/m^2, more than six times of the CHF of the grinding burn with a value of (8~10)×10^6 W/m^2. 展开更多
关键词 high efficiency cooling mist jet impinging enhancing heat transfer critical heat flux
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部