An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform il...An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform illumination image.Non-uniform illumination hides some important information present in an image during the image capture Also,it degrades the visual quality of image which generates the need for enhancement of such images.Various techniques have been present in literature for the enhancement of such type of images.In this paper,a novel architecture has been proposed for enhancement of poor illumination images which uses radial basis approximations based BEMD(Bi-dimensional Empirical Mode Decomposition).The enhancement algorithm is applied on intensity and saturation components of image.Firstly,intensity component has been decomposed into various bi-dimensional intrinsic mode function and residue by using sifting algorithm.Secondly,some linear transformations techniques have been applied on various bidimensional intrinsic modes obtained and residue and further on joining the transformed modes with residue,enhanced intensity component is obtained.Saturation part of an image is then enhanced in accordance to the enhanced intensity component.Final enhanced image can be obtained by joining the hue,enhanced intensity and enhanced saturation parts of the given image.The proposed algorithm will not only give the visual pleasant image but maintains the naturalness of image also.展开更多
With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capac...With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capacity wireless data transmission. In this paper, we propose a prototype of real-time audio and video broadcast system using inexpensive commercially available light emitting diode (LED) lamps. Experimental results show that real-time high quality audio and video with the maximum distance of 3 m can be achieved through proper layout of LED sources and improvement of concentration effects. Lighting model within room environment is designed and simulated which indicates close relationship between layout of light sources and distribution of illuminance.展开更多
This paper presents an algorithm to solve the problem of Photo-Response Non-Uniformity(PRNU)noise facing stabilized video.The stabilized video undergoes in-camera processing like rolling shutter correction.Thus,misali...This paper presents an algorithm to solve the problem of Photo-Response Non-Uniformity(PRNU)noise facing stabilized video.The stabilized video undergoes in-camera processing like rolling shutter correction.Thus,misalignment exists between the PRNU noises in the adjacent frames owing to the global and local frame registration performed by the in-camera processing.The misalignment makes the reference PRNU noise and the test PRNU noise unable to extract and match accurately.We design a computing method of maximum likelihood estimation algorithm for extracting the PRNU noise from stabilized video frames.Besides,unlike most prior arts tending to match the PRNU noise in whole frame,we propose a new patch-based matching strategy,aiming at reducing the influence from misalignment of frame the PRNU noise.After extracting the reference PRNU noise and the test PRNU noise,this paper adopts the reference and the test PRNU overlapping patch-based matching.It is different from the traditional matching method.This paper conducts different experiments on 224 stabilized videos taken by 13 smartphones in the VISION database.The area under curve of the algorithm proposed in this paper is 0.841,which is significantly higher than 0.805 of the whole frame matching in the traditional algorithm.Experimental results show good performance and effectiveness the proposed strategy by comparing with the prior arts.展开更多
We present a system that automatically recovers scene geometry and illumination from a video, providing a basis for various applications. Previous image based illumination estimation methods require either user intera...We present a system that automatically recovers scene geometry and illumination from a video, providing a basis for various applications. Previous image based illumination estimation methods require either user interaction or external information in the form of a database. We adopt structure-from-motion and multi-view stereo for initial scene reconstruction, and then estimate an environment map represented by spherical harmonics (as these perform better than other bases). We also demonstrate several video editing applications that exploit the recovered geometry and illumination, including object insertion (e.g., for augmented reality), shadow detection, and video relighting.展开更多
In the state of the art,grayscale image enhancement algorithms are typically adopted for enhancement of RGB color images captured with low or non-uniform illumination.As these methods are applied to each RGB channel i...In the state of the art,grayscale image enhancement algorithms are typically adopted for enhancement of RGB color images captured with low or non-uniform illumination.As these methods are applied to each RGB channel independently,imbalanced inter-channel enhancements(color distortion)can often be observed in the resulting images.On the other hand,images with non-uniform illumination enhanced by the retinex algorithm are prone to artifacts such as local blurring,halos,and over-enhancement.To address these problems,an improved RGB color image enhancement method is proposed for images captured under nonuniform illumination or in poor visibility,based on weighted guided image filtering(WGIF).Unlike the conventional retinex algorithm and its variants,WGIF uses a surround function instead of a Gaussian filter to estimate the illumination component;it avoids local blurring and halo artifacts due to its anisotropy and adaptive local regularization.To limit color distortion,RGB images are first converted to HSI(hue,saturation,intensity)color space,where only the intensity channel is enhanced,before being converted back to RGB space by a linear color restoration algorithm.Experimental results show that the proposed method is effective for both RGB color and grayscale images captured under low exposure and non-uniform illumination,with better visual quality and objective evaluation scores than from comparator algorithms.It is also efficient due to use of a linear color restoration algorithm.展开更多
Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar...Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three- dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.展开更多
基金This research is financially supported by the Deanship of Scientific Research at King Khalid University under research grant number(R.G.P 2/157/43).
文摘An image can be degraded due to many environmental factors like foggy or hazy weather,low light conditions,extra light conditions etc.Image captured under the poor light conditions is generally known as non-uniform illumination image.Non-uniform illumination hides some important information present in an image during the image capture Also,it degrades the visual quality of image which generates the need for enhancement of such images.Various techniques have been present in literature for the enhancement of such type of images.In this paper,a novel architecture has been proposed for enhancement of poor illumination images which uses radial basis approximations based BEMD(Bi-dimensional Empirical Mode Decomposition).The enhancement algorithm is applied on intensity and saturation components of image.Firstly,intensity component has been decomposed into various bi-dimensional intrinsic mode function and residue by using sifting algorithm.Secondly,some linear transformations techniques have been applied on various bidimensional intrinsic modes obtained and residue and further on joining the transformed modes with residue,enhanced intensity component is obtained.Saturation part of an image is then enhanced in accordance to the enhanced intensity component.Final enhanced image can be obtained by joining the hue,enhanced intensity and enhanced saturation parts of the given image.The proposed algorithm will not only give the visual pleasant image but maintains the naturalness of image also.
文摘With the increasing popularity of solid sate lighting devices, Visible Light Communication (VLC) is globally recognized as an advanced and promising technology to realize short-range, high speed as well as large capacity wireless data transmission. In this paper, we propose a prototype of real-time audio and video broadcast system using inexpensive commercially available light emitting diode (LED) lamps. Experimental results show that real-time high quality audio and video with the maximum distance of 3 m can be achieved through proper layout of LED sources and improvement of concentration effects. Lighting model within room environment is designed and simulated which indicates close relationship between layout of light sources and distribution of illuminance.
基金funded by the National Natural Science Foundation of China(61872203 and 61802212)the Shandong Provincial Natural Science Foundation(ZR2019BF017)+3 种基金Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY010127,2019JZZY010132,and 2019JZZY010201)Jinan City“20 universities”Funding Projects Introducing Innovation Team Program(2019GXRC031)Plan of Youth Innovation Team Development of colleges and universities in Shandong Province(SD2019-161)the Project of Shandong Province Higher Educational Science and Technology Program(J18KA331).
文摘This paper presents an algorithm to solve the problem of Photo-Response Non-Uniformity(PRNU)noise facing stabilized video.The stabilized video undergoes in-camera processing like rolling shutter correction.Thus,misalignment exists between the PRNU noises in the adjacent frames owing to the global and local frame registration performed by the in-camera processing.The misalignment makes the reference PRNU noise and the test PRNU noise unable to extract and match accurately.We design a computing method of maximum likelihood estimation algorithm for extracting the PRNU noise from stabilized video frames.Besides,unlike most prior arts tending to match the PRNU noise in whole frame,we propose a new patch-based matching strategy,aiming at reducing the influence from misalignment of frame the PRNU noise.After extracting the reference PRNU noise and the test PRNU noise,this paper adopts the reference and the test PRNU overlapping patch-based matching.It is different from the traditional matching method.This paper conducts different experiments on 224 stabilized videos taken by 13 smartphones in the VISION database.The area under curve of the algorithm proposed in this paper is 0.841,which is significantly higher than 0.805 of the whole frame matching in the traditional algorithm.Experimental results show good performance and effectiveness the proposed strategy by comparing with the prior arts.
基金This work was supported by the National Natural Science Foundation of China (NSFC) and the Israel Science Foundation (ISF), Joint NSFC-ISF Research Program under Grant No. 61561146393, the National Natural Science Foundation of China under Grant No. 61521002, a research grant from the Beijing Higher Institution Engineering Research Center, and the Tsinghua-Tencent Joint Laboratory for Internet Innovation Technology.
文摘We present a system that automatically recovers scene geometry and illumination from a video, providing a basis for various applications. Previous image based illumination estimation methods require either user interaction or external information in the form of a database. We adopt structure-from-motion and multi-view stereo for initial scene reconstruction, and then estimate an environment map represented by spherical harmonics (as these perform better than other bases). We also demonstrate several video editing applications that exploit the recovered geometry and illumination, including object insertion (e.g., for augmented reality), shadow detection, and video relighting.
基金This work was supported by the National Natural Science Foundation of China(Grant No.2019YFB1405000)the National Natural Science Basic Research Plan Program of Shaanxi,China(Grant Nos.2019JM-162 and 2019JM-348).
文摘In the state of the art,grayscale image enhancement algorithms are typically adopted for enhancement of RGB color images captured with low or non-uniform illumination.As these methods are applied to each RGB channel independently,imbalanced inter-channel enhancements(color distortion)can often be observed in the resulting images.On the other hand,images with non-uniform illumination enhanced by the retinex algorithm are prone to artifacts such as local blurring,halos,and over-enhancement.To address these problems,an improved RGB color image enhancement method is proposed for images captured under nonuniform illumination or in poor visibility,based on weighted guided image filtering(WGIF).Unlike the conventional retinex algorithm and its variants,WGIF uses a surround function instead of a Gaussian filter to estimate the illumination component;it avoids local blurring and halo artifacts due to its anisotropy and adaptive local regularization.To limit color distortion,RGB images are first converted to HSI(hue,saturation,intensity)color space,where only the intensity channel is enhanced,before being converted back to RGB space by a linear color restoration algorithm.Experimental results show that the proposed method is effective for both RGB color and grayscale images captured under low exposure and non-uniform illumination,with better visual quality and objective evaluation scores than from comparator algorithms.It is also efficient due to use of a linear color restoration algorithm.
基金This work was supported by the National Natural Science Foundation of China (Grant No.51590903).
文摘Solar thermoelectric generators (STEGs) are heat engines which can generate electricity from concentrated sunlight. The non-uniform illumination caused by the optical concentrator may affect the performance of solar thermoelectric generators. In this paper, a three- dimensional finite element model of solar thermoelectric generators is established. The two-dimensional Gaussian distribution is employed to modify the illumination profiles incident on the thermoelectric generator. Six non-uniformities of solar illumination are investigated while keeping the total energy constant. The influences of non-uniform illumination on the temperature distribution, the voltage distribution, and the maximum output power are respectively discussed. Three thermoelectric generators with 32, 18 and 8 pairs of thermocouples are compared to investigate their capability under non-uniform solar radiation. The result shows that the non-uniformity of the solar illumination has a great effect on the temperature distribution and the voltage distribution. Central thermoelectric legs can achieve a larger temperature difference and generate a larger voltage than peripheral ones. The non-uniform solar illumination will weaken the capability of the TE generator, and the maximum output power decrease by 1.4% among the range of non-uniformity studied in this paper. Reducing the number of the thermoelectric legs for non-uniform solar illumination can greatly increase the performance of the thermoelectric generator.