The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on w...The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on water loss ratio were consistent with those on drying shrinkage strain. It is also indicated that drying shrinkage strain has obvious linear correlation with water loss ratios independent of specimen size and shape. The effects of specimen size and shape on the water loss ratio were embodied in established model of averaged relative humidity improved by considering effects of sequential hydration and calculated by finite difference method. Furthermore, the effects of specimen size and shape on drying shrinkage strain of concrete were experimentally deduced and applied to modify criterion EB-FIP1990. The comparison between experimental and calculated results shows that the modified EB-FIP1990 can be adopted to predict drying shrinkage strain of concrete with reasonable accuracy.展开更多
Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, ...Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, which needs much reinforcement and support prior to mining. Cement-sodium silicate grout technology was selected, then its related parameters such as grout pressure, diffusion radius and time were calculated and proposed. In order to test the effect of the pressured grout in the fractured No.4 ore block, field experiments were conducted. To optimize stoping configuration, three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed. The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously. After grout, ore recovery rate is increased by 10.2 % employing the newly designed stoping configuration compared with the previous. Last, analyzed from the surface movements, roof subsidence and the maximum principal stress of the pillars, the mining safety is probable of being ensured.展开更多
Shrinkage strain of concrete specimen with different reinforcement configuration was measured at various depths from the exposed surface by using several pairs of displacement sensors. Only one surface of the concrete...Shrinkage strain of concrete specimen with different reinforcement configuration was measured at various depths from the exposed surface by using several pairs of displacement sensors. Only one surface of the concrete specimen was exposed to dry condition during the experiment. The results show that differential shrinkage strain occurs in both plain and steel reinforced concrete specimens according to depths from the exposed surface. A higher reinforcement ratio results in a greater restraint against shrinkage of concrete nearby reinforcement rebar and a worse differential shrinkage strain distribution in the concrete specimen. The restraint against shrinkage of concrete becomes lower with the increasing distance from reinforcement rebar. Under the same reinforcement arrangement, a higher free shrinkage of concrete leads to a stronger restraint against shrinkage and a higher shrinkage stress formation in local concrete. The relationship between shrinkage strain and reduction of relative humidity in reinforced concrete structure is far different from that in plain concrete.展开更多
It is of importance to enhance the urban areas'capacity for population aggregation in underdeveloped regions,aiming to rectify the imbalanced and insufficient pattern of economic development in China.Taking the Ta...It is of importance to enhance the urban areas'capacity for population aggregation in underdeveloped regions,aiming to rectify the imbalanced and insufficient pattern of economic development in China.Taking the Taiyuan Metropolitan Area(TMA)in central China as a case study,this paper examines the evolutionary process and characteristics of population agglomeration from 2000 to 2020,and identifies factors associated with agglomeration and their spatial effects.The findings indicated that:1)against the background of sustained population shrinkage in the provincial area,the TMA showed a demographic trend of steady increase,albeit with a decelerated growth rate.In the metropolitan area,urban population size continued to grow rapidly,whereas the rural areas endured sustained losses.Disparities in city size continued to widen,and the polarization of concentrated population in the core cities kept increasing.2)Agglomerations in both secondary and service industries had significant positive effects on local population agglomeration,with the former effect being stronger.Regional economic development,government fiscal expenditure,and financial advancement all contributed to facilitating local population clustering.From a spatial spillover perspective,service agglomeration and financial development promoted population agglomeration in surrounding areas.Conversely,fiscal expenditure inhibited such agglomeration.As for industrial agglomeration and regional economic development,their spatial spillover effects were non-significant.The results obtained reveal several policy implications aimed at enhancing the population agglomeration capacity of the metropolitan area in underdeveloped regions during the new era.展开更多
Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures...Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures.Tunnel face instability often occurs with the soil arching collapse.This study investigates the combined effect of cutterhead opening ratio and soil non-uniformity on soil arching effect and face stability,via conducting random finite-element analysis coupled with Monte–Carlo simulations.The results underscore that the face stability is strongly associated with the evolution of stress arch.The obtained stability factors in the uniform soils can serve as a reference for the design of support pressure in practical tunnelling engineering.In addition,non-uniform soils exhibit a lower stability factor than uniform soils,which implies that the latter likely yields an underestimated probability of face failure.The tunnel face is found to have a probability of failure more than 50%if the spatial non-uniformity of soil is ignored.In the end,a practical framework is established to determine factor of safety(FOS)corresponding to different levels of probability of face failure considering various opening ratios in non-uniform soils.The required FOS is 1.70 to limit the probability of face instability no more than 0.1%.Our findings can facilitate the prediction of probability of instability in the conventionally deterministic design of face pressure.展开更多
Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest v...Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.展开更多
Boundary constraint induced inhomogeneous effects are important for mechanical responses of nano/micro-devices.For microcantilever sensors,the clamped-end constraint induced inhomogeneous effect of static deformation,...Boundary constraint induced inhomogeneous effects are important for mechanical responses of nano/micro-devices.For microcantilever sensors,the clamped-end constraint induced inhomogeneous effect of static deformation,so called the clamped-end effect,has great influence on the detection signals.This paper is devoted to developing an alternative mechanical model to characterize the clamped-end effect on the static detection signals of the DNA-microcantilever.Different from the previous concentrated load models,the DNA adsorption is taken as an equivalent uniformly distributed tangential load on the substrate upper surface,which exactly satisfies the zero force boundary condition at the free-end.Thereout,a variable coefficient differential governing equation describing the non-uniform deformation of the DNA-microcantilever induced by the clamped-end constraint is established by using the principle of minimum potential energy.By reducing the order of the governing equation,the analytical solutions of the curvature distribution and static bending deflection are obtained.By comparing with the previous approximate surface stress models,the clamped-end effect on the static deflection signals is discussed,and the importance of the neutral axis shift effect is also illustrated for the asymmetric laminated microcantilever.展开更多
Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate...Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. By considering a circular thin film/substrate system subject to non-uniform, but axisymmetric misfit strain distributions in the thin film, we derived relations between the film stresses and the misfit strain, and between the plate system's curvatures and the misfit strain. These relations feature a “local” part which involves a direct dependence of the stress or curvature components on the misfit strain at the same point, and a “non-local” part which reflects the effect of misfit strain of other points on the location of scrutiny. Most notably, we also derived relations between the polar components of the film stress and those of system curvatures which allow for the experimental inference of such stresses from full-field curvature measurements in the presence of arbitrary radial non-uniformities. These relations also feature a “non-local” dependence on curvatures making a full-field measurement a necessity. Finally, it is shown that the interfacial shear tractions between the film and the substrate are proportional to the radial gradients of the first curvature invariant and can also be inferred experimentally.展开更多
基金Funded by the National Basic Research Program of China(No.2009CB623200)Zhejiang Natural Science Foundation(No.LQ12E08002)+1 种基金Ningbo Natural Science Foundation(No.2012A610159)the School Disciplinary Projects(No.zj1113,XKL11D2081)
文摘The effects of specimen size and shape on development of water loss and shrinkage of mortar and concrete respectively were investigated. The experimental results showed that the effects of specimen size and shape on water loss ratio were consistent with those on drying shrinkage strain. It is also indicated that drying shrinkage strain has obvious linear correlation with water loss ratios independent of specimen size and shape. The effects of specimen size and shape on the water loss ratio were embodied in established model of averaged relative humidity improved by considering effects of sequential hydration and calculated by finite difference method. Furthermore, the effects of specimen size and shape on drying shrinkage strain of concrete were experimentally deduced and applied to modify criterion EB-FIP1990. The comparison between experimental and calculated results shows that the modified EB-FIP1990 can be adopted to predict drying shrinkage strain of concrete with reasonable accuracy.
基金Projects(51374034,51674012) supported by the National Natural Science Foundation of ChinaProject(2013BAB02B05) supported by the China National Science and Technology Support Program during the 12th Five-Year Plan Period
文摘Proper room and pillar sizes are both critical factors for safe mining and high ore recovery rate in shrinkage stoping mining of underground metal mines. The rock masses of Tangdan copper mine of China are fractured, which needs much reinforcement and support prior to mining. Cement-sodium silicate grout technology was selected, then its related parameters such as grout pressure, diffusion radius and time were calculated and proposed. In order to test the effect of the pressured grout in the fractured No.4 ore block, field experiments were conducted. To optimize stoping configuration, three-dimensional numerical simulation with ANSYS and FLAC 3 D softwares was proposed. The results show that the drilling porosity and mechanical properties of the rock masses are increased obviously. After grout, ore recovery rate is increased by 10.2 % employing the newly designed stoping configuration compared with the previous. Last, analyzed from the surface movements, roof subsidence and the maximum principal stress of the pillars, the mining safety is probable of being ensured.
基金Funded by the National Natural Science Foundation of China(No.50408016)the Fundamental Research Funds for the Central Universities (No. HIT. NSRIF.201198)
文摘Shrinkage strain of concrete specimen with different reinforcement configuration was measured at various depths from the exposed surface by using several pairs of displacement sensors. Only one surface of the concrete specimen was exposed to dry condition during the experiment. The results show that differential shrinkage strain occurs in both plain and steel reinforced concrete specimens according to depths from the exposed surface. A higher reinforcement ratio results in a greater restraint against shrinkage of concrete nearby reinforcement rebar and a worse differential shrinkage strain distribution in the concrete specimen. The restraint against shrinkage of concrete becomes lower with the increasing distance from reinforcement rebar. Under the same reinforcement arrangement, a higher free shrinkage of concrete leads to a stronger restraint against shrinkage and a higher shrinkage stress formation in local concrete. The relationship between shrinkage strain and reduction of relative humidity in reinforced concrete structure is far different from that in plain concrete.
基金Under the auspices of the Humanities and Social Sciences Fund of the Ministry of Education of China (No.20YJC790107)Planning Project for Philosophy and Social Sciences of Shanxi Province (No.2021YJ040)Special Foundation for Science and Development of Shanxi Province (No.202204031401052)。
文摘It is of importance to enhance the urban areas'capacity for population aggregation in underdeveloped regions,aiming to rectify the imbalanced and insufficient pattern of economic development in China.Taking the Taiyuan Metropolitan Area(TMA)in central China as a case study,this paper examines the evolutionary process and characteristics of population agglomeration from 2000 to 2020,and identifies factors associated with agglomeration and their spatial effects.The findings indicated that:1)against the background of sustained population shrinkage in the provincial area,the TMA showed a demographic trend of steady increase,albeit with a decelerated growth rate.In the metropolitan area,urban population size continued to grow rapidly,whereas the rural areas endured sustained losses.Disparities in city size continued to widen,and the polarization of concentrated population in the core cities kept increasing.2)Agglomerations in both secondary and service industries had significant positive effects on local population agglomeration,with the former effect being stronger.Regional economic development,government fiscal expenditure,and financial advancement all contributed to facilitating local population clustering.From a spatial spillover perspective,service agglomeration and financial development promoted population agglomeration in surrounding areas.Conversely,fiscal expenditure inhibited such agglomeration.As for industrial agglomeration and regional economic development,their spatial spillover effects were non-significant.The results obtained reveal several policy implications aimed at enhancing the population agglomeration capacity of the metropolitan area in underdeveloped regions during the new era.
基金supported by the Natural Science Foundation Innovation Group Project of Hubei Province,China(Grant No.2023AFA017)the NRF-NSFC 3rd Joint Research Grant(Earth Science)(Grant No.41861144022).
文摘Tunnelling has increasingly become an essential tool in the exploration of underground space.A typical construction problem is the face instability during tunnelling,posing a great threat to associated infrastructures.Tunnel face instability often occurs with the soil arching collapse.This study investigates the combined effect of cutterhead opening ratio and soil non-uniformity on soil arching effect and face stability,via conducting random finite-element analysis coupled with Monte–Carlo simulations.The results underscore that the face stability is strongly associated with the evolution of stress arch.The obtained stability factors in the uniform soils can serve as a reference for the design of support pressure in practical tunnelling engineering.In addition,non-uniform soils exhibit a lower stability factor than uniform soils,which implies that the latter likely yields an underestimated probability of face failure.The tunnel face is found to have a probability of failure more than 50%if the spatial non-uniformity of soil is ignored.In the end,a practical framework is established to determine factor of safety(FOS)corresponding to different levels of probability of face failure considering various opening ratios in non-uniform soils.The required FOS is 1.70 to limit the probability of face instability no more than 0.1%.Our findings can facilitate the prediction of probability of instability in the conventionally deterministic design of face pressure.
基金Key Project of Joint Meteorological Fund of the National Natural Science Foundation of China (U2242202)Key Project of the National Natural Science Foundation of China (42030611)+1 种基金Innovative Development Special Project of China Meteorological Administration (CXFZ2023J016)Innovation Team Fund of Sichuan Provincial Meteorological Service (SCQXCX7D-202201)。
文摘Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.
基金the National Natural Science Foundation of China (Nos.11772182, 11272193,and 10872121)the Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-09-E00018)。
文摘Boundary constraint induced inhomogeneous effects are important for mechanical responses of nano/micro-devices.For microcantilever sensors,the clamped-end constraint induced inhomogeneous effect of static deformation,so called the clamped-end effect,has great influence on the detection signals.This paper is devoted to developing an alternative mechanical model to characterize the clamped-end effect on the static detection signals of the DNA-microcantilever.Different from the previous concentrated load models,the DNA adsorption is taken as an equivalent uniformly distributed tangential load on the substrate upper surface,which exactly satisfies the zero force boundary condition at the free-end.Thereout,a variable coefficient differential governing equation describing the non-uniform deformation of the DNA-microcantilever induced by the clamped-end constraint is established by using the principle of minimum potential energy.By reducing the order of the governing equation,the analytical solutions of the curvature distribution and static bending deflection are obtained.By comparing with the previous approximate surface stress models,the clamped-end effect on the static deflection signals is discussed,and the importance of the neutral axis shift effect is also illustrated for the asymmetric laminated microcantilever.
文摘Current methodologies used for the inference of thin film stress through curvature measurements are strictly restricted to stress and curvature states which are assumed to remain uniform over the entire film/substrate system. By considering a circular thin film/substrate system subject to non-uniform, but axisymmetric misfit strain distributions in the thin film, we derived relations between the film stresses and the misfit strain, and between the plate system's curvatures and the misfit strain. These relations feature a “local” part which involves a direct dependence of the stress or curvature components on the misfit strain at the same point, and a “non-local” part which reflects the effect of misfit strain of other points on the location of scrutiny. Most notably, we also derived relations between the polar components of the film stress and those of system curvatures which allow for the experimental inference of such stresses from full-field curvature measurements in the presence of arbitrary radial non-uniformities. These relations also feature a “non-local” dependence on curvatures making a full-field measurement a necessity. Finally, it is shown that the interfacial shear tractions between the film and the substrate are proportional to the radial gradients of the first curvature invariant and can also be inferred experimentally.