To study the quantitative relationship between surface sedimentary diatoms and water depth,67 surface samples were collected for diatom analysis on eight profiles with water depth variation from the muddy intertidal z...To study the quantitative relationship between surface sedimentary diatoms and water depth,67 surface samples were collected for diatom analysis on eight profiles with water depth variation from the muddy intertidal zone to the shallow sea area in North-Central Bohai Bay,China.The results showed that the distribution of diatoms changed significantly in response to the change in water depth.Furthermore,the quantitative relationship between the distribution of dominant diatom species,their assemblages,and the water depth was established.The water depth optima for seven dominant species such as Cyclotella striata/stylorum,Paralia sulcata,and Coscinodiscus perforatus and the water depth indication range of seven diatom assemblages were obtained in the study area above the water depth(elevation)of-10 m.The quantitative relationship between surface sedimentary diatoms and water depth provides a proxy index for diatom-paleo-water depth reconstruction in the strata in Bohai Bay,China.展开更多
A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and t...A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and the water film thickness on the road surface can be accurately predicted by the empirical verification based on sample data. Results show that the proposed ANN model is feasible to predict the water film thickness of the road surface.展开更多
The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth co...The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth composite Green function is employed to develop a program for the computation of the hydrodynamic coefficients of the very large FPSO at shallow water. A three-segment model with 1∶100 scale is tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the verification of the numerical method. The experimental and computational results show that the water depth has a substantial effect on wave-induced loads. The wave-induced vertical loads increase with the decrease of water depth for shallow water. Especially, for ultra-shallow water these loads increase very evidently with the decrease of water depth. The long-term prediction values of wave-induced vertical loads increase with the decrease of the ratio of water depth to draught. The long-term prediction values of wave-induced vertical loads are about 8% larger than those for deep water when the ratio of water depth to draught is 3.0. However, water depth hardly affects the long-term prediction values of wave-induced loads when the ratio of water depth to draught is larger than 5.0.展开更多
To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, wh...To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area.展开更多
Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draf...Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to. confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test.展开更多
In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tn...In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented.展开更多
The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm ...The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm AIW spreads in the Canada Basin during the observation time through the analysis of the AIW temperature spatial distribution in different periods. The results indicate that by 2006, the entire Canada Basin has almost been covered by the warming AIW. In order to study interannual variability of the AIW in the Canada Basin, the Canada Basin is divided into five regions according to the bottom topography. From the interannual variation of AIW temperature in each region, it is shown that a cooling period follows after the warming event in upstream regions. At the Chukchi Abyssal Plain and Chukchi Plateau, upstream of the Arctic Circumpolar Boundary Current (ACBC) in the Canada Basin, the AIW temperature reached maximum and then started to fall respectively in 2000 and 2002. However, the AIW in the Canada Abyssal Plain and Beaufort Sea continues to warm monotonically until the year 2006. Furthermore, it is revealed that there is convergence of the AIW depth in the five different regions of the Canada Basin when the AIW warming occurs during observation time. The difference of AIW depth between the five regions of the Canada Basin is getting smaller and smaller, all approaching 410 m in recent years. The results show that depth convergence is related to the variation of AIW potential density in the Canada Basin.展开更多
This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculat...This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculation. In the proposed Transformed Rayleigh method, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The proposed new method has been applied for calculating the wave height exceedance probabilities of a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in this case that the proposed new method can offer better predictions than those by using the conventional Rayleigh wave height distribution model. The proposed new method has been further applied for calculating the total horizontal loads on a generic jacket, and its accuracy has once again been substantiated. The research findings gained from this study demonstrate that the proposed Transformed Rayleigh model can be utilized as a promising alternative to the well-established nonlinear wave height distribution models.展开更多
The highest similarity degree of static characteristics including both horizontal and vertical restoring force-displacement characteristics of total mooring system, as well as the tension-displacement characteristics ...The highest similarity degree of static characteristics including both horizontal and vertical restoring force-displacement characteristics of total mooring system, as well as the tension-displacement characteristics of the representative single mooring line between the truncated and full depth system are obtained by annealing simulation algorithm for hybrid discrete variables (ASFHDV, in short). A“baton” optimization approach is proposed by utilizing ASFHDV. After each baton of optimization, if a few dimensional variables reach the upper or lower limit, the boundary of certain dimensional variables shall be expanded. In consideration of the experimental requirements, the length of the upper mooring line should not be smaller than 8 m, and the diameter of the anchor chain on the bottom should be larger than 0.03 m. A 100000 t turret mooring FPSO in the water depth of 304 m, with the truncated water depth being 76 m, is taken as an example of equivalent water depth truncated mooring system optimal design and calculation, and is performed to obtain the conformation parameters of the truncated mooring system. The numerical results indicate that the present truncated mooring system design is successful and effective.展开更多
To study the effect of high temperature, rice seedlings 20, 30, 40 and 50 d were kept at 5, 10, 15 and 20 cm water depth in a water pool. Meteorological findings indicated that water temperature varied up to 10 cm but...To study the effect of high temperature, rice seedlings 20, 30, 40 and 50 d were kept at 5, 10, 15 and 20 cm water depth in a water pool. Meteorological findings indicated that water temperature varied up to 10 cm but became stable below this depth. Deep water inflicted higher tiller mortality, minimal increase in dry weight of aerial parts and leaf area, decrease in root length, and decrease in root dry weight especially at 20 cm water depth and produced an unbalanced T/R ratio (top versus root dry weight). However, deep water tended to increase plant length. These parameters, however, excel in shallow water. Older seedlings, with the exception of root dry weight, could not perform well compared to young seedlings in all physiological and morphological aspects. The study revealed that seedlings, particularly young ones, stand well in shallow water and can cope with high temperature.展开更多
For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of...For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.展开更多
Three color variants of the sea cucumber,Apostichopus japonicus are recognized,the red one is highly valued in the market. When the red variant is cultured in ponds in China,its body color changes from red to celadon ...Three color variants of the sea cucumber,Apostichopus japonicus are recognized,the red one is highly valued in the market. When the red variant is cultured in ponds in China,its body color changes from red to celadon in 3–6 months. The effects of water depth and substrate color on the growth and body color of this animal were investigated. Juveniles of red A. japonicus were cultured in cages suspended at a range of water depths(20,50,100,150 and 200 cm). The specific growth rate of red sea cucumbers was significantly higher in animals cultured at deeper water layers compared with those grown at shallowers. Body weights were greatest for sea cucumbers cultured at a depth of 150 cm and their survival rates were highest at a depth of 200 cm. A scale to evaluate the color of red sea cucumbers(R value) was developed using a Pantone standard color card. All stocked animals in the 9-month trial retained a red color,however the red body color was much more intense in sea cucumbers cultured at shallower depths,while animals suspended in deeper layers became pale. In a separate trial,A. japonicus were cultured in suspended cages with seven different colored substrates. Substrate color had a significant effect on the growth and body-color of red A. japonicus. The yield were greatest for A. japonicus cultured on a yellow substrate,followed by green > white > orange > red > black and blue. All sea cucumbers in the 7-month trial retained a red color,although the red was most intense(highest R value) in animals cultured on a blue substrate and pale(lowest R value) for animals cultured on a green substrate.展开更多
The spectrum derived in Part 1 of the presert paper is here systematically verified with field data andcompared at some length with that obtained by multiplying the deep-water spectrum with theKitaigorodskii factor.
Finite water depth effect for wave-body problems are studied by continuous Rankine source method and non-desingularized technique.Free surface and seabed surface profiles are represented by continuous panels rather th...Finite water depth effect for wave-body problems are studied by continuous Rankine source method and non-desingularized technique.Free surface and seabed surface profiles are represented by continuous panels rather than a discretization by isolated points.These panels are positioned exactly on the fluid boundary surfaces and therefore no desingularization technique is required.Space increment method is applied for both free surface source and seabed source arrangements to reduce computational cost and improve numerical efficiency.Fourth order Runge-Kutta iteration scheme is adopted on the free surface updating at every time step.The finite water depth effect is studied quantitatively for a series of cylinders with different B/T ratios.The accuracy and efficiency of the proposed model are validated by comparison with published numerical results and experimental data.Numerical results show that hydrodynamic coefficients vary for cylinder bodies with different ratios of B/T.For certain set of B/T ratios the effect of finite water depth increases quickly with the increase of motion frequency and becomes stable when frequency is relatively large.It also shows that water depths have larger hydrodynamic effects on cylinder with larger breadth to draft ratios.Both the heave added mass and damping coefficients increase across the frequency range with the water depths decrease for forced heave motion.The water depths have smaller effects on sway motion response than on heave motion response.展开更多
In this paper,a methodology for designing mooring system deployment for vessels at varying water depths is proposed.The Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is combined with a self-dependently developed ...In this paper,a methodology for designing mooring system deployment for vessels at varying water depths is proposed.The Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is combined with a self-dependently developed vessel-mooring coupled program to find the optimal mooring system deployment considering both station-keeping requirements and the safety of the mooring system.Two case studies are presented to demonstrate the methodology by designing the mooring system deployments for a very large floating structure(VLFS)module and a semi-submersible platform respectively at three different water depths.It can be concluded from the obtained results that the mooring system can achieve a better station-keeping ability with relatively shorter mooring line when deployed in the shallow water.The safety factor of mooring line is mainly dominated by the maximum instantaneous tension increment in the shallow water,while the pre-tension has a decisive influence on the safety factor of the mooring line in the deep water.展开更多
A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Enlerian-Lagrangian formulation is adopted and a higher-order boundary element metho...A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Enlerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The botmdary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.展开更多
Wen et al.'s method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the ze...Wen et al.'s method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m0 and peak frequency ω0, contains in addition to the peakness factor P= ω0S(ω0)/m0, a depth parameter ω= (2πm0)1/2/d (d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.展开更多
Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18°32′N, 73°51′E, 559 m Above Mean Sea Level), India have been studied over a period of five years. ...Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18°32′N, 73°51′E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean vertical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) where an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Relative Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the largest at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon.展开更多
High-salinity phreatic water refers to which with total dissolved solids(TDS)>30 g/L. Previous studies have shown that high salinity phreatic water evaporation is different at different depths. High salinity phre...High-salinity phreatic water refers to which with total dissolved solids(TDS)>30 g/L. Previous studies have shown that high salinity phreatic water evaporation is different at different depths. High salinity phreatic water evaporation under 0 m depth is the basis of the high salinity phreatic water evaporation studies. In this study, evaporation of high-salinity phreatic water at a burial depth of 0 m in arid area was investigated. New insights were gained on evaporation mechanisms via experiments conducted on high-salinity phreatic water with TDS of 100 g/L at 0 m at the study site at Changji Groundwater Balance Experiment Site, Xinjiang Uygur Autonomous Region in China, where the lithology of the vadose(unsaturated zone) was silty clay. Comparison was made on the data of high-salinity phreatic water evaporation, water surface evaporation(EΦ20) and meteorological data obtained in two complete hydrological years from April 1, 2012 to March 31, 2014. The experiments demonstrated that when the lithology of the vadose zone is silty clay, the burial depth is 0 m and the TDS is 100 g/L, intra-annual variation of phreatic water evaporation is the opposite to the variation of atmospheric evaporation EΦ20 and air temperature. The salt crust formed by the evaporation of high-salinity phreatic water has a strong inhibitory effect on phreatic water evaporation. Large volumes of precipitation can reduce such an inhibitory effect. During freezing periods, surface snow cover can promote the evaporation of high-salinity phreatic water at 0 m; the thicker the snow cover, the more apparent this effect is.展开更多
Wave-number spectrum technique is proposed to retrieve coastal water depths by means of Synthetic Aperture Radar (SAR) image of waves. Based on the general dispersion relation of ocean waves the wavelength changes o...Wave-number spectrum technique is proposed to retrieve coastal water depths by means of Synthetic Aperture Radar (SAR) image of waves. Based on the general dispersion relation of ocean waves the wavelength changes of a surface wave over varying water depths can be derived from SAR. Approaching the analysis of SAR images of waves and using the general dispersion relation of ocean waves, this indirect technique of remote sensing bathymetry has been applied to a coastal region of Xiapu in Fujian Province, China. Results show that this technique is suitable for the coastal waters especially for the near-shore regions with variable water depths.展开更多
基金supported by the National Natural Science Foundation of China Youth Fund(41806109)the project of the China Geological Survey(DD20189506)。
文摘To study the quantitative relationship between surface sedimentary diatoms and water depth,67 surface samples were collected for diatom analysis on eight profiles with water depth variation from the muddy intertidal zone to the shallow sea area in North-Central Bohai Bay,China.The results showed that the distribution of diatoms changed significantly in response to the change in water depth.Furthermore,the quantitative relationship between the distribution of dominant diatom species,their assemblages,and the water depth was established.The water depth optima for seven dominant species such as Cyclotella striata/stylorum,Paralia sulcata,and Coscinodiscus perforatus and the water depth indication range of seven diatom assemblages were obtained in the study area above the water depth(elevation)of-10 m.The quantitative relationship between surface sedimentary diatoms and water depth provides a proxy index for diatom-paleo-water depth reconstruction in the strata in Bohai Bay,China.
文摘A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and the water film thickness on the road surface can be accurately predicted by the empirical verification based on sample data. Results show that the proposed ANN model is feasible to predict the water film thickness of the road surface.
文摘The effects of water depth on the wave-induced vertical bending moment and shearing force on a very large FPSO are studied by experiments and computations for regular and irregular waves. The restricted water depth composite Green function is employed to develop a program for the computation of the hydrodynamic coefficients of the very large FPSO at shallow water. A three-segment model with 1∶100 scale is tested in the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University for the verification of the numerical method. The experimental and computational results show that the water depth has a substantial effect on wave-induced loads. The wave-induced vertical loads increase with the decrease of water depth for shallow water. Especially, for ultra-shallow water these loads increase very evidently with the decrease of water depth. The long-term prediction values of wave-induced vertical loads increase with the decrease of the ratio of water depth to draught. The long-term prediction values of wave-induced vertical loads are about 8% larger than those for deep water when the ratio of water depth to draught is 3.0. However, water depth hardly affects the long-term prediction values of wave-induced loads when the ratio of water depth to draught is larger than 5.0.
基金financially supported by the Ecological and Environmental Monitoring Project (JJ[2011]-017)funded by the Executive Office of the Three Gorges Project Construction Committee of the State Council of China+1 种基金the National Non-Profit Research Program of China (200903001)the National Basic Research Program of China(2010CB429001)
文摘To better understand soil moisture dynamics in the Yangtze River Estuary (YRE) and predict its variation in a simple way, a field monitoring experiment was carried out along the north branch of the Yangtze River, where seawater intrusion was strong and salt-water variation is one of the limiting factors of local agriculture. In present paper, relation between antecedent precipitation index (API) and soil water content is studied, and effects of groundwater depth on soil water content was analyzed. A relatively accurate prediction result of soil water content was reached using a neural network model. The impact analysis result showed that the variation of the API was consistent with soil water content and it displayed significant correlations with soil water content in both 20 and 50 cm soil layer, and higher correlation was observed in the layer of 20 cm. Groundwater impact analysis suggested that soil moisture was affected by the depth of groundwater, and was affected more greatly by groundwater at depth of 50 cm than that at 20 cm layer. By introducing API, groundwater depth and temperature together, a BP artificial network model was established to predict soil water content and an acceptable agreement was achieved. The model can be used for supplementing monitoring data of soil water content and predicting soil water content in shallow groundwater areas, and can provide favorable support for the research of water and salt transport in estuary area.
基金supported by the project of Shandong Provincial National Science Foundation for Distinguished Young Scholars(Grant No.JQ201113)SDUST's National Science Foundation for Distinguished Young Scholars(Grant No.2010KYJQ102)
文摘Vertical errors often present in multibeam swath bathymetric data. They are mainly sourced by sound refraction, internal wave disturbance, imperfect tide correction, transducer mounting, long period heave, static draft change, dynamic squat and dynamic motion residuals, etc. Although they can be partly removed or reduced by specific algorithms, the synthesized depth biases are unavoidable and sometimes have an important influence on high precise utilization of the final bathymetric data. In order to. confidently identify the decimeter-level changes in seabed morphology by MBES, we must remove or weaken depth biases and improve the precision of multibeam bathymetry further. The fixed-interval profiles that are perpendicular to the vessel track are generated to adjust depth biases between swaths. We present a kind of postprocessing method to minimize the depth biases by the histogram of cumulative depth biases. The datum line in each profile can be obtained by the maximum value of histogram. The corrections of depth biases can be calculated according to the datum line. And then the quality of final bathymetry can be improved by the corrections. The method is verified by a field test.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No10602055)Nature Science Foundation of China Jiliang University (Grant No XZ0501)
文摘In this paper, an inner turret moored FPSO which works in the water of 320 m depth, is selected to study the socalled "passively-truncated + numerical-simulation" type of hybrid model testing technique while the tnmcated water depth is 160 m and the model scale ), = 80. During the investigation, the optimization design of the equivalent-depth truncated system is performed by using the similarity of the static characteristics between the truncated system and the full depth one as the objective function. According to the truncated system, the corresponding physical test model is made. By adopting the coupling time domain simulation method, the tnmcated system model test is numerically reconstructed to carefully verify the computer simulation software and to adjust the corresponding hydrodynamic parameters. Based on the above work, the numerical extrapolation to the full depth system is performed by using the verified computer software and the adjusted hydrodyrmmic parameters. The full depth system model test is then performed in the basin and the results are compared with those from the numerical extrapolation. At last, the implementation procedure and the key technique of the hybrid model testing of the deep-sea platforms are summarized and printed. Through the above investigations, some beneficial conclusions are presented.
基金The National Natural Science Foundation of China under contract Nos 40631006 and 40876003the Polar Science Youth Innovational Foundation of China under contract No. 20080221the National Key Basic Research Program "973" of China under contract No. 2010CB950301
文摘The warming of the Arctic Intermediate Water (AIW) is studied based on the analyses of hydro- graphic observations in the Canada Basin of the Arctic Ocean during 1985-2006. It is shown that how the anomalously warm AIW spreads in the Canada Basin during the observation time through the analysis of the AIW temperature spatial distribution in different periods. The results indicate that by 2006, the entire Canada Basin has almost been covered by the warming AIW. In order to study interannual variability of the AIW in the Canada Basin, the Canada Basin is divided into five regions according to the bottom topography. From the interannual variation of AIW temperature in each region, it is shown that a cooling period follows after the warming event in upstream regions. At the Chukchi Abyssal Plain and Chukchi Plateau, upstream of the Arctic Circumpolar Boundary Current (ACBC) in the Canada Basin, the AIW temperature reached maximum and then started to fall respectively in 2000 and 2002. However, the AIW in the Canada Abyssal Plain and Beaufort Sea continues to warm monotonically until the year 2006. Furthermore, it is revealed that there is convergence of the AIW depth in the five different regions of the Canada Basin when the AIW warming occurs during observation time. The difference of AIW depth between the five regions of the Canada Basin is getting smaller and smaller, all approaching 410 m in recent years. The results show that depth convergence is related to the variation of AIW potential density in the Canada Basin.
基金financially supported by the Chinese State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University(Grant No.GKZD010038)
文摘This paper concerns the calculation of wave height exceedance probabilities for nonlinear irregular waves in transitional water depths, and a Transformed Rayleigh method is first proposed for carrying out the calculation. In the proposed Transformed Rayleigh method, the transformation model is chosen to be a monotonic exponential function, calibrated such that the first three moments of the transformed model match the moments of the true process. The proposed new method has been applied for calculating the wave height exceedance probabilities of a sea state with the surface elevation data measured at the Poseidon platform. It is demonstrated in this case that the proposed new method can offer better predictions than those by using the conventional Rayleigh wave height distribution model. The proposed new method has been further applied for calculating the total horizontal loads on a generic jacket, and its accuracy has once again been substantiated. The research findings gained from this study demonstrate that the proposed Transformed Rayleigh model can be utilized as a promising alternative to the well-established nonlinear wave height distribution models.
基金supported by the Natural Science Foundation of Zhejiang Province(Grant No.Y6110243)the Open Fund Project of Second Institute of Oceanography(Grant No.SOED1208)+1 种基金the Major Projects of the National Science and Technology(Grant No.2009ZX07424-001)the Special Program for the Science and Technology Plan of Zhejiang Province of China(Grant No.2009C13016)
文摘The highest similarity degree of static characteristics including both horizontal and vertical restoring force-displacement characteristics of total mooring system, as well as the tension-displacement characteristics of the representative single mooring line between the truncated and full depth system are obtained by annealing simulation algorithm for hybrid discrete variables (ASFHDV, in short). A“baton” optimization approach is proposed by utilizing ASFHDV. After each baton of optimization, if a few dimensional variables reach the upper or lower limit, the boundary of certain dimensional variables shall be expanded. In consideration of the experimental requirements, the length of the upper mooring line should not be smaller than 8 m, and the diameter of the anchor chain on the bottom should be larger than 0.03 m. A 100000 t turret mooring FPSO in the water depth of 304 m, with the truncated water depth being 76 m, is taken as an example of equivalent water depth truncated mooring system optimal design and calculation, and is performed to obtain the conformation parameters of the truncated mooring system. The numerical results indicate that the present truncated mooring system design is successful and effective.
文摘To study the effect of high temperature, rice seedlings 20, 30, 40 and 50 d were kept at 5, 10, 15 and 20 cm water depth in a water pool. Meteorological findings indicated that water temperature varied up to 10 cm but became stable below this depth. Deep water inflicted higher tiller mortality, minimal increase in dry weight of aerial parts and leaf area, decrease in root length, and decrease in root dry weight especially at 20 cm water depth and produced an unbalanced T/R ratio (top versus root dry weight). However, deep water tended to increase plant length. These parameters, however, excel in shallow water. Older seedlings, with the exception of root dry weight, could not perform well compared to young seedlings in all physiological and morphological aspects. The study revealed that seedlings, particularly young ones, stand well in shallow water and can cope with high temperature.
文摘For computation of large amplitude motions of ships fastened to a dock, a fast evaluation scheme is implemented for computation of the time-domain Green function for finite water depth. Based on accurate evaluation of the Green function directly, a fast approximation method for the Green function is developed by use of Chebyshev polynomials. Examinations are carried out of the accuracy of the Green function and its derivatives from the scheme. It is shown that when an appropriate number of polynomial terms are used, very accurate approximation can be obtained.
基金Supported by the National Natural Science Foundation of China(No.31440089)the National Spark Program of China(No.2014GA690259)+2 种基金the National Marine Public Welfare Project of China(No.200905020)the Natural Science Research General Program of Jiangsu Provincial Higher Education Institutions(No.14KJD240002)the Special Guide Fund Project of Agricultural Science and Technology Innovation of Yancheng(No.13KJB610056)
文摘Three color variants of the sea cucumber,Apostichopus japonicus are recognized,the red one is highly valued in the market. When the red variant is cultured in ponds in China,its body color changes from red to celadon in 3–6 months. The effects of water depth and substrate color on the growth and body color of this animal were investigated. Juveniles of red A. japonicus were cultured in cages suspended at a range of water depths(20,50,100,150 and 200 cm). The specific growth rate of red sea cucumbers was significantly higher in animals cultured at deeper water layers compared with those grown at shallowers. Body weights were greatest for sea cucumbers cultured at a depth of 150 cm and their survival rates were highest at a depth of 200 cm. A scale to evaluate the color of red sea cucumbers(R value) was developed using a Pantone standard color card. All stocked animals in the 9-month trial retained a red color,however the red body color was much more intense in sea cucumbers cultured at shallower depths,while animals suspended in deeper layers became pale. In a separate trial,A. japonicus were cultured in suspended cages with seven different colored substrates. Substrate color had a significant effect on the growth and body-color of red A. japonicus. The yield were greatest for A. japonicus cultured on a yellow substrate,followed by green > white > orange > red > black and blue. All sea cucumbers in the 7-month trial retained a red color,although the red was most intense(highest R value) in animals cultured on a blue substrate and pale(lowest R value) for animals cultured on a green substrate.
基金Project supported by the National Natural Science Foundation of China.
文摘The spectrum derived in Part 1 of the presert paper is here systematically verified with field data andcompared at some length with that obtained by multiplying the deep-water spectrum with theKitaigorodskii factor.
基金the support by the National Natural Science Foundation of China(No.11372184)
文摘Finite water depth effect for wave-body problems are studied by continuous Rankine source method and non-desingularized technique.Free surface and seabed surface profiles are represented by continuous panels rather than a discretization by isolated points.These panels are positioned exactly on the fluid boundary surfaces and therefore no desingularization technique is required.Space increment method is applied for both free surface source and seabed source arrangements to reduce computational cost and improve numerical efficiency.Fourth order Runge-Kutta iteration scheme is adopted on the free surface updating at every time step.The finite water depth effect is studied quantitatively for a series of cylinders with different B/T ratios.The accuracy and efficiency of the proposed model are validated by comparison with published numerical results and experimental data.Numerical results show that hydrodynamic coefficients vary for cylinder bodies with different ratios of B/T.For certain set of B/T ratios the effect of finite water depth increases quickly with the increase of motion frequency and becomes stable when frequency is relatively large.It also shows that water depths have larger hydrodynamic effects on cylinder with larger breadth to draft ratios.Both the heave added mass and damping coefficients increase across the frequency range with the water depths decrease for forced heave motion.The water depths have smaller effects on sway motion response than on heave motion response.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51709170 and 51979167)the Ministry of Industry and Information Technology of China(Mooring position technology:floating support platform engineering(II))the Shanghai Sailing Program(Grant No.17YF1409700)
文摘In this paper,a methodology for designing mooring system deployment for vessels at varying water depths is proposed.The Non-dominated Sorting Genetic Algorithm-II(NSGA-II)is combined with a self-dependently developed vessel-mooring coupled program to find the optimal mooring system deployment considering both station-keeping requirements and the safety of the mooring system.Two case studies are presented to demonstrate the methodology by designing the mooring system deployments for a very large floating structure(VLFS)module and a semi-submersible platform respectively at three different water depths.It can be concluded from the obtained results that the mooring system can achieve a better station-keeping ability with relatively shorter mooring line when deployed in the shallow water.The safety factor of mooring line is mainly dominated by the maximum instantaneous tension increment in the shallow water,while the pre-tension has a decisive influence on the safety factor of the mooring line in the deep water.
基金supported by the National Natural Science Foundation of China (Grant Nos .50709005 ,50639030 and 10772040)the National High Technology Research and Development Program of China (Grant No.2006AA09A109-3) UK EPSRC(Grant Nos . GR/T07220/01 and GR/T07220/02)
文摘A numerical model is developed to simulate fully nonlinear extreme waves in finite and infinite water-depth wave tanks. A semi-mixed Enlerian-Lagrangian formulation is adopted and a higher-order boundary element method in conjunction with an image Green function is used for the fluid domain. The botmdary values on the free surface are updated at each time step by a fourth-order Runga-Kutta time-marching scheme at each time step. Input wave characteristics are specified at the upstream boundary by an appropriate wave theory. At the downstream boundary, an artificial damping zone is used to prevent wave reflection back into the computational domain. Using the image Green function in the whole fluid domain, the integrations on the two lateral walls and bottom are excluded. The simulation results on extreme wave elevations in finite and infinite water-depths are compared with experimental results and second-order analytical solutions respectively. The wave kinematics is also discussed in the present study.
基金Project supported by the National Natural Science Foundation of China.
文摘Wen et al.'s method developed to obtain wind-wave frequency spectrum in deep water was used to derive the spectrum in finite depth water. The spectrum S(ω) (ω being angular frequency) when normalized with the zeroth moment m0 and peak frequency ω0, contains in addition to the peakness factor P= ω0S(ω0)/m0, a depth parameter ω= (2πm0)1/2/d (d being water depth), so the spectrum behavior can be studied for different wave growth stages and water depths.
文摘Spatio-temporal variations of water vapor optical depth in the lower troposphere (450-3850 m) over Pune (18°32′N, 73°51′E, 559 m Above Mean Sea Level), India have been studied over a period of five years. The mean vertical structure showed that the moisture content is greatest at the lowest level and decreases with increasing altitude, except in the south-west monsoon season (June to September) where an increase upto 950 m has been found. Optical depths are maximum in the monsoon season. The increase from pre-monsoon (March-May) to monsoon season in moisture content on an average is by about 58% in the above altitude range. The temporal variations in surface Relative Humidity and optical depth at 450 m show positive correlation. The amplitude of seasonal oscillation is the largest at 1465 m altitude. The time-height cross-sections of water vapor optical depths in the lower troposphere showed a contrast between years of good and bad monsoon.
基金sponsored by NationalNatural Science Foundation of China (51069016)Foundation of Key Disciplines in Hydrology and Water Resources of Xinjiang Uygur Autonomous Region (xjswszyzdxk20101202)
文摘High-salinity phreatic water refers to which with total dissolved solids(TDS)>30 g/L. Previous studies have shown that high salinity phreatic water evaporation is different at different depths. High salinity phreatic water evaporation under 0 m depth is the basis of the high salinity phreatic water evaporation studies. In this study, evaporation of high-salinity phreatic water at a burial depth of 0 m in arid area was investigated. New insights were gained on evaporation mechanisms via experiments conducted on high-salinity phreatic water with TDS of 100 g/L at 0 m at the study site at Changji Groundwater Balance Experiment Site, Xinjiang Uygur Autonomous Region in China, where the lithology of the vadose(unsaturated zone) was silty clay. Comparison was made on the data of high-salinity phreatic water evaporation, water surface evaporation(EΦ20) and meteorological data obtained in two complete hydrological years from April 1, 2012 to March 31, 2014. The experiments demonstrated that when the lithology of the vadose zone is silty clay, the burial depth is 0 m and the TDS is 100 g/L, intra-annual variation of phreatic water evaporation is the opposite to the variation of atmospheric evaporation EΦ20 and air temperature. The salt crust formed by the evaporation of high-salinity phreatic water has a strong inhibitory effect on phreatic water evaporation. Large volumes of precipitation can reduce such an inhibitory effect. During freezing periods, surface snow cover can promote the evaporation of high-salinity phreatic water at 0 m; the thicker the snow cover, the more apparent this effect is.
基金Supported by the Fund of the Second Institute of Oceanography,SOA (No.1403-40 and 1426-40)
文摘Wave-number spectrum technique is proposed to retrieve coastal water depths by means of Synthetic Aperture Radar (SAR) image of waves. Based on the general dispersion relation of ocean waves the wavelength changes of a surface wave over varying water depths can be derived from SAR. Approaching the analysis of SAR images of waves and using the general dispersion relation of ocean waves, this indirect technique of remote sensing bathymetry has been applied to a coastal region of Xiapu in Fujian Province, China. Results show that this technique is suitable for the coastal waters especially for the near-shore regions with variable water depths.