期刊文献+
共找到1,107篇文章
< 1 2 56 >
每页显示 20 50 100
Tailoring the texture and mechanical properties of 3%Y_(2)O_(3)p/ZGK200 composites fabricated by unidirectional and cross rolling followed by annealing
1
作者 Xihai Li Hong Yan +1 位作者 Zhiwei Shan Rongshi Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1479-1495,共17页
3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled an... 3%Y_(2)O_(3)p/ZGK200 composites were subjected to unidirectional rolling(UR)and cross rolling(CR)at 400℃and 350℃followed by annealing at 300℃for 1 h.The microstructure,texture and mechanical properties of rolled and annealed composites were systematically studied.The rolled composites exhibited a heterogeneous microstructure,consisting of deformed grains elongated along rolling direction(RD)and Y_(2)O_(3)particles bands distributed along RD.After annealing,static recrystallization(SRX)occurred and most deformed grains transformed into equiaxed grains.A non-basal texture with two strong T-texture components was obtained after UR while a non-basal elliptical/circle texture with circle multi-peaks was obtained after CR,indicating that rolling path had great influences on texture of the composites.After annealing process,R-texture component disappeared or weakened,as results,a non-basal texture with double peaks tilting from normal direction(ND)to transverse direction(TD)and a more random non-basal texture with circle multi-peaks were obtained for UR and CR composites,respectively.The yield strength of rolled composites after UR showed obvious anisotropy along RD and TD while a low anisotropic yield strength was obtained after CR.Some Y_(2)O_(3)particles broke during rolling.The fracture of the composites was attributed to the existence of Y_(2)O_(3)clusters and interfacial debonding between particles and matrix during tension,as a result,the ductility was not as superior as matrix alloy. 展开更多
关键词 Magnesium matrix composites Unidirectional rolling Cross rolling TEXTURE Mechanical properties
下载PDF
Design,preparation,microstructure and mechanical property of the lightweight radiation-shielding Mg-Ta-Al composites basing differential temperature hot rolling
2
作者 Wenbo Luo Songya Feng +7 位作者 Xiuzhu Han Li Zhou Qinke Kong Zhiyong Xue Jianzhao Wang Mei Zhan Xianhua Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2433-2446,共14页
A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiati... A novel lightweight,radiation-shielding Mg-Ta-Al layered metal-matrix composite(LMC)was successful designed by doping the extremely refractory metal(Ta)into Mg sheets.These Mg-based LMCs sheets shows excellent radiation-dose shield effect,about 145 krad·a^(−1),which is about 17 times of traditional Mg alloy,while its surface density is only about 0.9 g·cm^(−2),reducing by 60%than that of pure Ta.The quantitate relationship between radiation-dose and the materials’thickness was also confirmed to the logistic function when the surface density is in the range of 0.6-1.5 g·cm^(−2).Meantime,the rolling parameters,interface microstructure and mechanical properties in both as-rolled and annealing treated samples were evaluated.The sheets possess a special dissimilar atoms diffusion transitional zone containing an obvious inter-diffusion Mg-Al interface and the unique micro-corrugated Ta-Al interface,as well as a thin Al film with a thickness of about 10μm.The special zone could reduce the stress concentration and enhance the strength of Mg-Ta-Al LMCs.The interface bonding strength reaches up to 54-76 MPa.The ultimate tensile strength(UTS)and yield strength(TYS)of the Mg-Ta-Al sheet were high to 413 MPa and 263 MPa,respectively,along with an elongation of 5.8%.The molecular dynamics(MD)analysis results show that the two interfaces exhibit different formation mechanism,the Mg-Al interface primarily depended on Mg/Al atoms diffusion basing point defects movement,while the Ta-Al interface with a micro-interlock pining shape formed by close-packed planes slipping during high temperature strain-induced deformation process. 展开更多
关键词 Dissimilar metals composites Mg based alloys Radiation shielding Hot rolling LIGHTWEIGHT
下载PDF
Bonding enhancement of cold rolling TA1 P-Ti/AA6061 composite plates via surface oxidation treatment
3
作者 Lun FU Bin YANG +2 位作者 Yun-chang GUO Chao YU Hong XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2864-2880,共17页
TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure ti... TA1 P-Ti/AA6061 composite plate was produced by oxidizing the surface of the titanium plate and adopting a cold roll bonding process.The results revealed that the oxide film(Ti6O)prepared on the surface of TA1 pure titanium was easy to crack during the cold roll bonding,thereby promoting the formation of an effective mechanical interlock at the interface,which can effectively reduce the minimum reduction rate of the composite plates produced by cold rolling of titanium and aluminium plates.Moreover,the composite plate subjected to oxidation treatment exhibited high shear strength,particularly at a 43%reduction rate,achieving a commendable value of 117 MPa.Based on oxidation treatment and different reduction rates,the annealed composite plates at temperatures of 400,450,and 500°C displayed favorable resistance to interface delamination,highlighting their remarkable strength-plasticity compatibility as evidenced by a maximum elongation of 31.845%. 展开更多
关键词 TA1 P-Ti/AA6061 composite plate oxidation treatment annealing treatment cold roll bonding
下载PDF
Effects of rolling and annealing on microstructures and properties of Cu/Invar electronic packaging composites prepared by powder metallurgy 被引量:5
4
作者 吴丹 杨磊 +2 位作者 史常东 吴玉程 汤文明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1995-2002,共8页
The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites wer... The Cu/Invar composites of 40% Cu were prepared by powder metallurgy, and the composites were rolled with 70% reduction and subsequently annealed at 750 ℃. Phases, microstructures and properties of the composites were then studied. After that, the amount of a-Fe(Ni,Co) in the composites is reduced, because a-Fe(Ni,Co) partly transfers into y-Fe(Ni,Co) through the diffusion of the Ni atoms into a-Fe(Ni,Co) from Cu. When the rolling reduction is less than 40%, the deformation of Cu takes place, resulting in the movement of the Invar particles and the seaming of the pores. When the rolling reduction is in the range from 40% to 60%, the deformations of Invar and Cu occur simultaneously to form a streamline structure. After rolling till 70% and subsequent annealing, the Cu/Invar composites have fine comprehensive properties with a relative density of 98.6%, a tensile strength of 360 MPa, an elongation rate of 50%, a thermal conductivity of 25.42 W/(m.K) (as-tested) and a CTE of 10.79× 10-6/K (20-100 ℃). 展开更多
关键词 electronic packaging material Cu/Invar composite rolling ANNEALING
下载PDF
Densification process of 10%B_4C-AA2024 matrix composite strips by semi-solid powder rolling 被引量:1
5
作者 莫灼强 刘允中 +1 位作者 贾惠芳 吴敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3181-3188,共8页
Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and A... Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and AA2024 mixed powders in the presence of liquid phase were investigated.The relationships between relative densities and rolling forces were analyzed as well.The results show that liquid fraction plays an important role in the densification process which can be divided into three stages.Rolling deformation is the main densification mechanism in deformation area when the liquid fraction is lower than 20%.When the liquid fraction is equal to or higher than 20%,the flowing and filling of liquid phase are the densification mechanisms in deformation area.The relative densities increase with increasing rolling forces.The relative density–rolling force curves are similar at 550 °C and 585 °C.The characteristics of the curve shapes are apparently different at 605 °C and 625 °C. 展开更多
关键词 semi-solid powder rolling composite strip densification process rolling deformation
下载PDF
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
6
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Influence of rolling temperature on the interfaces and mechanical performance of graphene-reinforced aluminum-matrix composites 被引量:9
7
作者 Chen-yang Huang Shui-ping Hu Kai Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第6期752-759,共8页
To study the influence of rolling on the interfaces and mechanical performance of graphene-reinforced Al-matrix composites,a rolling method was used to process them.Using scanning electron microscopy(SEM),transmission... To study the influence of rolling on the interfaces and mechanical performance of graphene-reinforced Al-matrix composites,a rolling method was used to process them.Using scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),Raman spectroscopy,and tensile testing,this study analyzed the micromorphology,interfaces,and mechanical performance of the composites before and after rolling.The experimental results demonstrates that the composites after hot rolling has uniform structures with strong interfacial bonding.With an increase in rolling temperature,the tensile strength and elastic modulus of the composites gradually increase.However,when the rolling temperature is higher than 500°C,granular and rod-like Al4C3 phases are observed at the interfaces and the mechanical performance of the composites is degraded.When the rolling temperature is 480°C,the composites show the optimal comprehensive mechanical performance,with a tensile strength and elastic modulus of 403.3 MPa and 77.6 GPa,respectively,which represent increases of 31.6%and 36.9%,respectively,compared with the corresponding values prior to rolling. 展开更多
关键词 rolling GRAPHENE composite INTERFACE mechanical performance
下载PDF
Bending stress of rolling element in elastic composite cylindrical roller bearing 被引量:11
8
作者 姚齐水 杨文 +1 位作者 于德介 余江鸿 《Journal of Central South University》 SCIE EI CAS 2013年第12期3437-3444,共8页
A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and t... A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%. 展开更多
关键词 elastic composite cylindrical roller bearing hollowness (degree of filling) finite element analysis bending stress rolling element
下载PDF
Microstructure and mechanical properties of Al-TiB_2/TiC in situ composites improved via hot rolling 被引量:3
9
作者 Jin-feng NIE Fang WANG +3 位作者 Yu-sheng LI Yan-fang LIU Xiang-fa LIU Yong-hao ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第12期2548-2554,共7页
A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the ... A kind of Al-TiB2/TiC in situ composite with a homogenous microstructure was successfully prepared through in situ reaction of pure Ti and Al-B-C alloy with molten aluminum.In order to improve the distribution of the particles and mechanical properties of the composites,subsequent hot rolling with increasing reduction was carried out.The microstructure evolution of the composites was characterized using field emission scanning electron microscopy(FESEM)and the mechanical properties were studied through tensile tests and microhardness measurement.It is found that both the microstructure uniformity and mechanical properties of the composites are significantly improved with increasing rolling reduction.The ultimate tensile strength and microhardness of the composites with90%rolling reduction reach185.9MPa and HV59.8,respectively,140%and35%higher than those of as-cast ones.Furthermore,the strengthening mechanism of the composite was analyzed based on the fracture morphologies. 展开更多
关键词 in-situ composites TiB2/TiC particles rolling mechanical property
下载PDF
Effect of cold-rolling on tensile strength of SiCw/Al composite 被引量:1
10
作者 ZHANGWenlong ZHANGMu +2 位作者 GUMingyuan WANGDezun YAOZhongkai 《Rare Metals》 SCIE EI CAS CSCD 2003年第4期285-288,共4页
SiC_w/Al composite was fabricated through a squeeze cast route and coldrolled to about 30 percent, 50 percent and 70 percent reduction In thickness, respectively. Thelength of whiskers in the composite before and afte... SiC_w/Al composite was fabricated through a squeeze cast route and coldrolled to about 30 percent, 50 percent and 70 percent reduction In thickness, respectively. Thelength of whiskers in the composite before and after rolling was examined using SEM. Some of therolled composites were recrystallization annealed to remove the work hardening of matrix alloy. Thetensile strength of the rolled and annealed SiC_w/Al composites was examined and then associatedwith the change of the whisker length and the work hardening of matrix alloy. It was found that thetensile strength is a function of the degree of cold rolling. For the cold rolled composites, withthe increase in the degree of cold rolling, the tensile strength increases at first, and decreaseswhen the degree of cold rolling exceeds 50 percent. For the annealed ones, however; the tensilestrength decreases monotonously with the increase in rolling degree. The different changes intensile strength between the rolled and annealed composites could be attributed to the result of thecompetition between the work hardening of matrix resulting from the cold rolling and the worksoftening arising from the change of whisker length. 展开更多
关键词 metal matrix composites tensile strength cold rolling MICROSTRUCTURE
下载PDF
Effects of hot rolling on microstructure and properties of a 20 vol.% SiC_P/Al composite 被引量:1
11
作者 QUShoujiang GENGLin MENGQingchang FENGAihan LEITingquan 《Rare Metals》 SCIE EI CAS CSCD 2005年第1期95-99,共5页
A 20 vol. percent SiC_p/Al composite was fabricated by squeeze casting, ofwhich a new process for fabricating the preform was used by blending Al powder and SiC particulateswith average diameters of 10 and 3.5 mu m, r... A 20 vol. percent SiC_p/Al composite was fabricated by squeeze casting, ofwhich a new process for fabricating the preform was used by blending Al powder and SiC particulateswith average diameters of 10 and 3.5 mu m, respectively. The microstructure of the as-cast and thehot-rolled composite was investigated by using TEM, EDS, and SEM, and their tensile properties weremeasured at room temperature. The results show that the ultimate tensile strength and ultimateelongation of the hot-rolled composite are 80 percent and 140 percent higher than those of theas-cast one. The TEM observation result indicates that there are high density of dislocations anddislocation tangles in the hot-rolled composite. Al_2O_3 layers in the composite resulting from thesurface oxidation of the aluminum powders were damaged to spherical particles during hot rolling.All the results indicate that hot-rolling can improve the mechanical properties of the compositeand, therefore, engineering components of the 20 vol. percent SiC_p/Al composite can be produced bysqueeze casting followed by hot-rolling. 展开更多
关键词 composite hot rolling squeeze casting silicon carbide particulate
下载PDF
Microstructure and mechanical behavior of Ti/Cu/Ti laminated composites produced by corrugated and flat rolling 被引量:2
12
作者 Zhu-bo LIU Xin-yue WANG +4 位作者 Ming-shuo LIU Yuan-ming LIU Jiang-lin LIU A.V.IGNATOV Tao WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2598-2608,共11页
Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron mic... Ti/Cu/Ti laminated composites were fabricated by corrugated rolling(CR) and flat rolling(FR) method.Microstructure and mechanical properties of CR and FR laminated composites were investigated by scanning electron microscopy, numerical simulation methods, peel and tensile examinations. The effect of CR and FR was comparatively analyzed. The results showed that the CR and FR laminated composites exhibited different effective plastic strain distributions of the Ti layer and Cu layer at the interface. The recrystallization texture, prismatic texture and pyramidal texture were developed in the Ti layer by CR, while the R-Goss texture and shear texture were developed in the Cu layer by CR. The typical deformation texture components were developed in the Ti layer and Cu layer of FR laminated composites. The CR laminated composites had higher bond strength, tensile strength and ductility. 展开更多
关键词 Ti/Cu/Ti laminated composites corrugated rolling flat rolling bond strength interfacial microstructure finite element analysis
下载PDF
Finite element polycrystal model simulation of cold rolling textures in deformation processed two-phase Nb/Al metal-metal composites 被引量:2
13
作者 陈礼清 KANETAKE Naoyuki 《中国有色金属学会会刊:英文版》 CSCD 2005年第1期64-71,共8页
The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) ... The finite element polycrystal model (FEPM) was extended and applied to simulate the development of the cold rolling textures of matrix aluminum in deformation processed two-phase 10% and 20%Nb/Al(in volume fraction) metal-metal composites on the basis of slip deformation of individual grains. This simulation method can assure the continuity of stress and displacement at the boundary during heterogeneous deformation and take arbitrary boundary conditions into consideration. The starting hot-extruded textures, as initial input condition, were taken into account in the FEPM simulation. The simulation results show that the main texture components and their evolution after various cold rolling reductions in 10% and 20%Nb/Al metal-metal composites are well qualitatively in agreement with the experimental ones. The initially extruded textures are rather weak, so they have no much influence on the simulated final cold rolling textures of the matrix aluminum for Nb/Al composites. 展开更多
关键词 metal-matrix composites FEPM Nb/Al composite TEXTURE rolling
下载PDF
Microstructures and properties of 1.0%Al_2O_3/Cu composite treated by rolling 被引量:3
14
作者 刘向兵 贾成厂 +1 位作者 陈晓华 盖国胜 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期626-629,共4页
The 1.0%Al2O3/Cu(mass fraction) composite was prepared by hot pressing(HP),then treated by rolling to get a full density. The microstructures and the micro area element distribution of the composite were analyzed by S... The 1.0%Al2O3/Cu(mass fraction) composite was prepared by hot pressing(HP),then treated by rolling to get a full density. The microstructures and the micro area element distribution of the composite were analyzed by SEM. The density,electric conductivity and tensile strength were also investigated. The experimental results show that the alumina particles are more dispersed and become smaller through a single-pass rolling. The pore existing in the composite is eliminated or closed under the rolling force. The relative density increases from 98.4% to 99.2%. The electric conductivity increases from 88.9%IACS to 91.2%IACS. The tensile strength is increased by 47% from 300 MPa to 440 MPa. 展开更多
关键词 三氧化二铝/铜复合物 热处理 碾压 气孔 微观结构
下载PDF
Mathematical modeling and simulation of the interface region of a tri-layer composite material,brass-steel-brass,produced by cold rolling
15
作者 H. Arabi S.H. Seyedein +1 位作者 A. Mehryab B. Tolaminejad 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第2期189-196,共8页
The object of this study was to find the optimum conditions for the production of a sandwich composite from the sheets of brass-steel-brass. The experimental data obtained during the production process were used to va... The object of this study was to find the optimum conditions for the production of a sandwich composite from the sheets of brass-steel-brass. The experimental data obtained during the production process were used to validate the simulation program, which was written to establish the relation between the interface morphology and the thickness reduction amount of the composite. For this purpose, two surfaces of a steel sheet were first prepared by scratching brushing before inserting it between two brass sheets with smooth surfaces. Three sheets were then subjected to a cold rolling process for producing a tri-layer composite with various thick- nesses. The sheet interface after rolling was studied by different techniques, and the bonding strength for each rolling condition was determined by peeling test. Moreover, a relation between interfacial bonding strength and thickness reduction was found. The simulation results were compared with the experimental data and the available theoretical models to modify the original simulation program with high application efficiency used for predicting the behavior of the interface under different pressures. 展开更多
关键词 sandwich composite cold rolling mathematical simulation metallic bonding INTERFACE
下载PDF
THE OPERATIONAL PROPERTY ANALYSES OF THE COMPOSITE ROLLING BEARING
16
作者 张力 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1997年第3期30-34,共5页
This paper deals with the test research on noise and fatigue life of the composite rolling bearings which have been developed recently. The test results show that the-composite rolling bearings have remarkable advanta... This paper deals with the test research on noise and fatigue life of the composite rolling bearings which have been developed recently. The test results show that the-composite rolling bearings have remarkable advantages of low noise and great load-bearing capacity over plastic ones. 展开更多
关键词 composite rolling bearings noise fatigue life
下载PDF
Effect of Cold-rolling on Hardness of SiC_w/Al Composite
17
作者 张文龙 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第4期40-42,共3页
A SiC w/Al composite was fabricated through a squeeze cast route and cold rolled to about 30%, 50% and 70% reduction in thickness, respectively. The length of whiskers in the composite before and after rolling was ex... A SiC w/Al composite was fabricated through a squeeze cast route and cold rolled to about 30%, 50% and 70% reduction in thickness, respectively. The length of whiskers in the composite before and after rolling was examined using SEM. Some of the rolled composites were annealed by recrystallizing to remove the work hardening of the matrix alloy. The hardness of the rolled and annealed SiC w/Al composites was examined and then associated with the change of the whisker length and the work hardening of the matrix alloy. It was found that the hardness was a function of the degree of cold rolling. For the cold rolled composites, with the increase in the degree of cold rolling, the hardness increases at first, and decreases when the degree of cold rolling exceeds 50%. For the annealed ones, however, the hardness decreases monotonously with the increase in rolling degree. The different changes in hardness between the rolled and annealed composites could be attributed to a result of the competition between the work hardening of the matrix resulting from the cold rolling and the work softening arising from the change of whisker length. 展开更多
关键词 metal matrix composites cold rolling HARDNESS MICROSTRUCTURE
下载PDF
Rolling of Al-SiC_p Composites
18
作者 Rajesh Purohit Anil Kumar Das Rakesh Sagar 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期103-105,共3页
Aluminum based metal matrix composites are offering o utstanding properties in a number of automotive and aircraft components and body structures. The major advantages of these composite materials are their high st re... Aluminum based metal matrix composites are offering o utstanding properties in a number of automotive and aircraft components and body structures. The major advantages of these composite materials are their high st rength to weight ratio, high stiffness, high hardness, wear resistance, low coef ficient of thermal expansion, superior dimensional stability and versatility to designer. In addition to these their isotropic properties, good forming characte ristics, easy availability of cheaper reinforcements along with the availability of comparatively low cost, high volume production methods have made them a prom ising material for future growth. Weight reduction is a major goal of automotive innovations. Lighter vehicles/ ai rcraft means less fuel consumption, reduced emissions, and improved performance. Components made from highly loaded aluminium matrix composites are attractive r elative to iron based materials because of their low density, high stiffness (eq uivalent to nodular iron) and better heat transfer characteristics. The basic co st of materials is higher with these advanced composites; however, manufacturing the part to near net shape may offset basic material costs. A good aluminium based material design can improves safety. The aluminium-based composites can give cars better acceleration and braking, improved handling, ex cellent durability, and ease of repair. Tha aluminum-based composite performs a s well or better in crash than conventional steel-structured cars because of th eir larger volume, which can absorb more crash energy. Another excellent advanta ge of Al-SiC p composite in auto design is better stability and response, and reduced noise, vibration/harshness (NHV). These advantages stem from reduced veh icle weight combined with high structural stiffness and also lead to improved st ability and turning response. In the present work Al-SiC p composite plates of 10 to 12 mm thickness w ere cast using sand casting as well as die casting process. The plates were furt her machined to 3 to 4 mm thicknesses. The machined plates were subjected to col d as well hot rolling. The cold rolling of Al-3 wt.% SiC composite plates was done on 2 high experimental cold rolling mill at Indian Oil Corporation Ltd., R esearch and Development centre, Faridabad. For hot rolling, the Al-5 weight % SiC p composite plates were heat treated at 500 ℃ temperature and Al-15 weight % SiC p composite plates were heat treate d at 550 ℃ temperature for 20 minutes. The plates were hot rolled on 2 high ro lling mill of one ton capacity at IIT Delhi. The maximum percentage reduction ob tained after hot rolling of Al-5 weight % SiC p composite and Al- 15 weight % SiC p composite plates for 10 passes was 11 % and 6 % respectively. During col d rolling of Al-SiC p composites cracks (particle fracture) were observed due to the low ductility of Al-SiC p composties at room temperature. The various m echanical properties such as tensile strength, hardness and wear resistance were measured for the rolled and un-rolled Al-SiC p composite plates. The tensile strength of un-rolled and rolled Al-5wt.% SiC p composites are shown in Tab. 1. Table shows that the tensile strength decreases after rolling. This may be du e to the damage of the bonding between aluminum and silicon carbide particulates . The Rockwell hardness values of Al-5 wt.% SiC p composites measured before a nd after hot rolling are shown in Tab.2. The hardness was found to decrease afte r hot rolling, which may be due to the annealing of composites during heating. T he Rockwell hardness values of Al-3 wt.% SiC p composites before and after cold rolling are shown in Tab.3. The Table shows that the Rockwell hardness of Al-SiC p compostes increases after cold rolling due to the workhardening effec t. The wear resistance of rolled and un-rolled Al-SiC p composites were teste d on reciprocating ball on flat wear testing machine. The wear resistance of Al -SiC p composites decreases after hot rolling due to decrease in hardness 展开更多
关键词 SIC rolling of Al-SiC_p composites AL
下载PDF
Effect of Hot-Plate Rolling on the Microstructure Evolution and Mechanical Properties of In-Situ Nano-TiC_(P)/Al-Mg-Si Composites
19
作者 HUA Zhiting SHAN Tongtong +1 位作者 GENG Run ZHAO Qinglong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期513-517,共5页
The hot-plate rolling(HPR)process is adopted to achieve the optimal strength-ductility for the in-situ nano-TiC_(P)/Al-Mg-Si composites.There was no crack in the sheet by single pass of hot-plate rolling with a thickn... The hot-plate rolling(HPR)process is adopted to achieve the optimal strength-ductility for the in-situ nano-TiC_(P)/Al-Mg-Si composites.There was no crack in the sheet by single pass of hot-plate rolling with a thickness reduction of 80%,while there were numerous cracks in the sheet by two passes of conventional hot rolling to achieve a total reduction of 50%.The microstructure and mechanical properties of the composites subjected to 80%thickness reduction of hot rolling at 540℃were investigated by tensile tests,scanning electron microscopy,and electron backscatter diffraction.The yield strength and ultimate tensile strength of in-situ nano-TiC_(P)/Al-Mg-Si composites after the hot-plate rolling process and T6 heat treatment increased significantly due to the dislocation strengthening and precipitation strengthening. 展开更多
关键词 hot-plate rolling process aluminum matrix composites microstructure evolution mechanical property
下载PDF
High specific strength MWCNTs/Mg-14Li-1Al composite prepared by electrophoretic deposition, friction stir processing and cold rolling
20
作者 Lin XU Jia-hao WANG +4 位作者 Rui-zhi WU Chun-bo ZHANG Hua-jie WU Le-gan HOU Jing-huai ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第12期3914-3925,共12页
Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanic... Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength. 展开更多
关键词 metal matrix composites Mg-Li alloy multi-wall carbon nanotubes electrophoretic deposition friction stir processing rolling strengthening mechanism
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部