In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered in...In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.展开更多
Spontaneous potential well-logging is one of the important techniques in petroleum exploitation. A spontaneous potential satisfies an elliptic equivalued surface boundary value problem with discontinuous interface con...Spontaneous potential well-logging is one of the important techniques in petroleum exploitation. A spontaneous potential satisfies an elliptic equivalued surface boundary value problem with discontinuous interface conditions. In practice, the measuring electrode is so small that we can simplify the corresponding equivalued surface to a point. In this paper, we give a positive answer to this approximation process:when the equivalued surface shrinks to a point, the solution of the original equivalued surface boundary value problem converges to the solution of the corresponding limit boundary value problem.展开更多
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, ...A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.展开更多
In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and init...In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.展开更多
The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- ? -asymptotically nonexpansive multi-valued mappings and establish some strong c...The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- ? -asymptotically nonexpansive multi-valued mappings and establish some strong convergence theorems under certain conditions. We utilize the theorems to study a modified Halpern-type iterative algorithm for a system of equilibrium problems. The results improve and extend the corresponding results of Chang et al. (Applied Mathematics and Computation, 218, 6489-6497).展开更多
In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, w...In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.展开更多
Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) ...Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.展开更多
The paper deal with the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial ...The paper deal with the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.展开更多
In this paper we study the singularly penurbed boundary value problem: where e is a positive small parameter In the conditions: we prove the existences, and uniformly valid asymptotic expansions of solutions for the g...In this paper we study the singularly penurbed boundary value problem: where e is a positive small parameter In the conditions: we prove the existences, and uniformly valid asymptotic expansions of solutions for the given boundary value problems, and hence we improve the existing results.展开更多
Let Ω be a non-empty bounded open set in Rn(n ≥1) with boundary (?)Ω=Γ1∪Γ2. WedefineIn this paper, we consider the following variational eigenvalue problem:where △ denotes the Laplacian in Ω. We say that the s...Let Ω be a non-empty bounded open set in Rn(n ≥1) with boundary (?)Ω=Γ1∪Γ2. WedefineIn this paper, we consider the following variational eigenvalue problem:where △ denotes the Laplacian in Ω. We say that the scalar λ is an eigenvalue of (P) if展开更多
We present the optimal homotopy asymptotic method (OHAM) to find the numerical solution of the second order initial value problems of Bratu-type. We solve some examples to illustrate the validity and efficiency of the...We present the optimal homotopy asymptotic method (OHAM) to find the numerical solution of the second order initial value problems of Bratu-type. We solve some examples to illustrate the validity and efficiency of the method.展开更多
The purpose of this article is first to introduce the concept of multi-valued to- tally Quasi-φ-asymptotically nonexpansive semi-groups, which contains many kinds of semi- groups as its special cases, and then to mod...The purpose of this article is first to introduce the concept of multi-valued to- tally Quasi-φ-asymptotically nonexpansive semi-groups, which contains many kinds of semi- groups as its special cases, and then to modify the Halpern-Mann-type iteration algorithm for multi-valued totally Quasi-cS-asymptotically nonexpansive semi-groups to have the strong convergence under a limit condition only in the framework of Banach spaces. The results presented in this article improve and extend the corresponding results announced by many authors recently.展开更多
This paper is concerned with the generalzed global solution and its asymptotic properties for the initial value problem of the partial differential equationu t+u x 3 =F(u).
Let p and q be two distinct primes, epq(n) denotes the largest exponent of power pq which divides n. In this paper, we study the mean value properties of function epq(n), and give some hybrid mean value formulas f...Let p and q be two distinct primes, epq(n) denotes the largest exponent of power pq which divides n. In this paper, we study the mean value properties of function epq(n), and give some hybrid mean value formulas for epq(n) and Dirichlet divisor function d(n). Key words: largest exponent; asymptotic formula; hybrid mean value; Dirichlet divisor function d(n)展开更多
In order to generalize Hadamard's theory of fundamental solutions to the case of degenerate holomorphic PDE, this paper studies the asymptotic expansion of Dirac-type distribution associated with a class of hypers...In order to generalize Hadamard's theory of fundamental solutions to the case of degenerate holomorphic PDE, this paper studies the asymptotic expansion of Dirac-type distribution associated with a class of hypersurfaces F(x) with degenerate critical points and proves that [F(x)](+)(lambda) is a distribution-valued meromorphic of lambda is an element of C under some assumptions on F(x). Next, the authors use the Normal form theory of Arnold and prove that for a hypersurface F(x) = 0 with A(mu) type degenerate critical point at x = 0, F-+(lambda) is a distribution-valued meromorphic function of lambda.展开更多
The initial boundary value problems for the system of rate-type viscoelasticityis considered in the present paper.It is shown that if the initial data are a small perturbationof a forward smooth rarefaction wave, then...The initial boundary value problems for the system of rate-type viscoelasticityis considered in the present paper.It is shown that if the initial data are a small perturbationof a forward smooth rarefaction wave, then there is a global solutions to the system, whichtends to the rarefaction wave time-asymptotically.展开更多
In this paper, we give precise formulas for the general two-dimensional recursion sequences by generating function method, and make use of the multivariate generating functions asymptotic estimation technique to compu...In this paper, we give precise formulas for the general two-dimensional recursion sequences by generating function method, and make use of the multivariate generating functions asymptotic estimation technique to compute their asymptotic values.展开更多
In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 tha...In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.展开更多
In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.
文摘In this study, the boundary-value problem with eigenvalue parameter generated by the differential equation with discontinuous coefficients and boundary conditions which contains not only endpoints of the considered interval, but also point of discontinuity and linear functionals is investigated. So, the problem is not pure boundary-value. The authors single out a class of linear functionals and find simple algebraic conditions on coefficients, which garantee the existence of infinit number eigenvalues. Also the asymptotic formulas for eigenvalues are found.
文摘Spontaneous potential well-logging is one of the important techniques in petroleum exploitation. A spontaneous potential satisfies an elliptic equivalued surface boundary value problem with discontinuous interface conditions. In practice, the measuring electrode is so small that we can simplify the corresponding equivalued surface to a point. In this paper, we give a positive answer to this approximation process:when the equivalued surface shrinks to a point, the solution of the original equivalued surface boundary value problem converges to the solution of the corresponding limit boundary value problem.
文摘A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
文摘In this paper, we study the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.
文摘The purpose of this article is to discuss a modified Halpern-type iteration algorithm for a countable family of uniformly totally quasi- ? -asymptotically nonexpansive multi-valued mappings and establish some strong convergence theorems under certain conditions. We utilize the theorems to study a modified Halpern-type iterative algorithm for a system of equilibrium problems. The results improve and extend the corresponding results of Chang et al. (Applied Mathematics and Computation, 218, 6489-6497).
基金The Project was supported by National Natural Science Foundation of China
文摘In this paper, we consider the following problem:The quadratic spline collocation, with uniform mesh and the mid-knot points are taken as the collocation points for this problem is considered. With some assumptions, we have proved that the solution of the quadratic spline collocation for the nonlinear problem can be written as a series expansions in integer powers of the mesh-size parameter. This gives us a construction method for using Richardson’s extrapolation. When we have a set of approximate solution with different mesh-size parameter a solution with high accuracy can he obtained by Richardson’s extrapolation.
文摘Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
文摘The paper deal with the asymptotic behavior of the solutions to the initial boundary value problem for unipolar drift diffusion equations for semiconductors. Under the proper assumptions on doping profile and initial value, we prove that the smooth solutions to these evolutionary problems tend to the unique stationary solution exponentially as time tends to infinity.
文摘In this paper we study the singularly penurbed boundary value problem: where e is a positive small parameter In the conditions: we prove the existences, and uniformly valid asymptotic expansions of solutions for the given boundary value problems, and hence we improve the existing results.
基金The NNSF (10025107) of China and the 973 Projects.
文摘Let Ω be a non-empty bounded open set in Rn(n ≥1) with boundary (?)Ω=Γ1∪Γ2. WedefineIn this paper, we consider the following variational eigenvalue problem:where △ denotes the Laplacian in Ω. We say that the scalar λ is an eigenvalue of (P) if
文摘We present the optimal homotopy asymptotic method (OHAM) to find the numerical solution of the second order initial value problems of Bratu-type. We solve some examples to illustrate the validity and efficiency of the method.
基金supported by the Natural Science Foundation of Yunnan Province (2011FB074)
文摘The purpose of this article is first to introduce the concept of multi-valued to- tally Quasi-φ-asymptotically nonexpansive semi-groups, which contains many kinds of semi- groups as its special cases, and then to modify the Halpern-Mann-type iteration algorithm for multi-valued totally Quasi-cS-asymptotically nonexpansive semi-groups to have the strong convergence under a limit condition only in the framework of Banach spaces. The results presented in this article improve and extend the corresponding results announced by many authors recently.
文摘This paper is concerned with the generalzed global solution and its asymptotic properties for the initial value problem of the partial differential equationu t+u x 3 =F(u).
文摘Let p and q be two distinct primes, epq(n) denotes the largest exponent of power pq which divides n. In this paper, we study the mean value properties of function epq(n), and give some hybrid mean value formulas for epq(n) and Dirichlet divisor function d(n). Key words: largest exponent; asymptotic formula; hybrid mean value; Dirichlet divisor function d(n)
文摘In order to generalize Hadamard's theory of fundamental solutions to the case of degenerate holomorphic PDE, this paper studies the asymptotic expansion of Dirac-type distribution associated with a class of hypersurfaces F(x) with degenerate critical points and proves that [F(x)](+)(lambda) is a distribution-valued meromorphic of lambda is an element of C under some assumptions on F(x). Next, the authors use the Normal form theory of Arnold and prove that for a hypersurface F(x) = 0 with A(mu) type degenerate critical point at x = 0, F-+(lambda) is a distribution-valued meromorphic function of lambda.
文摘The initial boundary value problems for the system of rate-type viscoelasticityis considered in the present paper.It is shown that if the initial data are a small perturbationof a forward smooth rarefaction wave, then there is a global solutions to the system, whichtends to the rarefaction wave time-asymptotically.
文摘In this paper, we give precise formulas for the general two-dimensional recursion sequences by generating function method, and make use of the multivariate generating functions asymptotic estimation technique to compute their asymptotic values.
文摘In this paper, we prove existence and multiplicities of solutions for asymptotically linear ordinary differential equations satisfying Sturm-Liouville boundary value conditions with resonance. Adding assumption H3 that is similar to (LL) in Theorem 1.1, by index theory and Morse theory, we obtain more nontrivial solutions.
基金Supported by the NNSF of China(10441002)Supported by NNSF of Henan Province(200510466011)
文摘In this paper we study the decay estimate of global solutions to the initial-boundary value problem for double degenerate nonlinear parabolic equation by using a dif-ference inequality.