As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was sol...As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was solution treated and was used as the original tube blank for ball spinning.Based on the variable temperature field and the constitutive equation,rigid-viscoplastic finite element method(FEM) was applied in order to simulate the ball spinning of NiTi SMA tube.The temperature field,the stress field,the strain field and the load prediction were obtained by means of FEM.FEM results reveal that there is a temperature increase of about 160 ℃ in the principal deformation zone of the spun part.It can be found from the stress fields and the strain fields that the outer wall of NiTi SMA tube is easier to meet the plastic yield criterion than the inner wall,and the plastic deformation zone is caused to be in a three-dimensional compressive stress state.The radial strain and the tangential strain are characterized by the compressive strain,while the axial strain belongs to the tensile strain.The variation of spinning loads with the progression of the ball is of great importance in predicting the stable flow of the spun part.展开更多
Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element ana...Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element analysis, we calculated the stress in and around the fracture faces when distal radius fracture was fixated with DRMC. Results: Axial holding stress produced by holding part of DRMC on distal radius was 14.66 MPa. The maximum stress of holding part was 40-70 MPa, the minimum stress was 3-7 MPa,and the stress of compression part was 20-40 MPa. Conclusion: The distribution of stress produced by DRMC around the fracture line is reasonable, and axial holding stress can help stabilize fracture during earlier period. The existence of longitudal compression and memory effect can transfer fixated disused section into developed section and enhance fracture healing.展开更多
Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis ba...Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains.展开更多
In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method...In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.展开更多
It is significant to numerically investigate thermo-mechanical behaviors of shape memory alloy(SMA)structures undergoing large and uneven deformation for they are used in many engineering fields to meet special requir...It is significant to numerically investigate thermo-mechanical behaviors of shape memory alloy(SMA)structures undergoing large and uneven deformation for they are used in many engineering fields to meet special requirements To solve the problems of convergence in the numerical simulation on thermo-mechanical behaviors of SMA structures by universal finite element software.This work suppose a finite element method to simulate the super-elasticity and shape memory effect in the SMA structure undergoing large and uneven deformation.Two scalars,named by phase-transition modulus and equivalent stiffness,are defined to make it easy to establish and implement the finite element method for a SMA structure.An incremental constitutive equation is developed to formulate the relationship of stress,strain and temperature in a SMA material based on phase-transition modulus and equivalent stiffness.A phase-transition modulus equation is derived to describe the relationship of phase-transition modulus,stress and temperature in a SMA material during the processes of martensitic phase transition and martensitic inverse phase transition.A finite element equation is established to express the incremental relationship of nodal displacement,external force and temperature change in a finite element discrete structure of SMA.The incremental constitutive equation,phase-transition modulus equation and finite element equation compose the supposed finite element method which simulate the thermo-mechanical behaviors of a SMA structure.Two SMA structures,which undergo large and uneven deformation,are numerically simulated by the supposed finite element method.Results of numerical simulation show that the supposed finite element method can effectively simulate the super-elasticity and shape memory effect of a SMA structure undergoing large and uneven deformation,and is suitable to act as an effective computational tool for the wide applications based on the SMA materials.展开更多
An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell ...An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.展开更多
The crystallization characteristics of a ubiquitous T-shaped phase change memory(PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed...The crystallization characteristics of a ubiquitous T-shaped phase change memory(PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed in this paper, the crystallization region under SET current pulse presents first on the corner of the bottom electron contact(BEC) and then promptly forms a filament shunting down the amorphous phase to achieve the low-resistance state, whereas the tiny disturb current pulse accelerates crystallization at the axis of symmetry in the phase change material. According to the different crystallization paths, a new structure of phase change material layer is proposed to improve the data retention for PCM without impeding SET operation.This structure only requires one or two additional process steps to dope nitrogen element in the center region of phase change material layer to increase the crystallization temperature in this confined region. The electrical-thermal characteristics of PCM cells with incremental doped radius have been analyzed and the best performance is presented when the doped radius is equal to the radius of the BEC.展开更多
As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SM...As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.展开更多
基金Project(51071056) supported by the National Natural Science Foundation of ChinaProject(HEUCF121712) supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt,ball spinning was used to manufacture the nickel-titanium shape memory alloy(NiTi SMA) tube at elevated temperature.The NiTi bar with a nominal composition of Ni50.9Ti49.1(mole fraction,%) was solution treated and was used as the original tube blank for ball spinning.Based on the variable temperature field and the constitutive equation,rigid-viscoplastic finite element method(FEM) was applied in order to simulate the ball spinning of NiTi SMA tube.The temperature field,the stress field,the strain field and the load prediction were obtained by means of FEM.FEM results reveal that there is a temperature increase of about 160 ℃ in the principal deformation zone of the spun part.It can be found from the stress fields and the strain fields that the outer wall of NiTi SMA tube is easier to meet the plastic yield criterion than the inner wall,and the plastic deformation zone is caused to be in a three-dimensional compressive stress state.The radial strain and the tangential strain are characterized by the compressive strain,while the axial strain belongs to the tensile strain.The variation of spinning loads with the progression of the ball is of great importance in predicting the stable flow of the spun part.
文摘Objective: To study the memory biomechanical character of anatomic distal radius Nitinol memory connector (DRMC) in treating distal radius fracture. Methods: Establishing three dimensional model and finite element analysis, we calculated the stress in and around the fracture faces when distal radius fracture was fixated with DRMC. Results: Axial holding stress produced by holding part of DRMC on distal radius was 14.66 MPa. The maximum stress of holding part was 40-70 MPa, the minimum stress was 3-7 MPa,and the stress of compression part was 20-40 MPa. Conclusion: The distribution of stress produced by DRMC around the fracture line is reasonable, and axial holding stress can help stabilize fracture during earlier period. The existence of longitudal compression and memory effect can transfer fixated disused section into developed section and enhance fracture healing.
基金Projects(51475101,51305091,51305092)supported by the National Natural Science Foundation of China
文摘Grain scale plasticity of NiTi shape memory alloy(SMA)during uniaxial compression deformation at 400℃was investigated through two-dimensional crystal plasticity finite element simulation and corresponding analysis based on the obtained orientation data.Stress and strain distributions of the deformed NiTi SMA samples confirm that there exhibits a heterogeneous plastic deformation at grain scale.Statistically stored dislocation(SSD)density and geometrically necessary dislocation(GND)density were further used in order to illuminate the microstructure evolution during uniaxial compression.SSD is responsible for sustaining plastic deformation and it increases along with the increase of plastic strain.GND plays an important role in accommodating compatible deformation between individual grains and thus it is correlated with the misorientation between neighboring grains,namely,a high GND density corresponds to large misorientation between grains and a low GND density corresponds to small misorientation between grains.
基金Projects(51305091,51475101)supported by the National Natural Science Foundation of ChinaProject(20132304120025)supported by Specialized Research Fund for the Doctoral Program of Higher Education,China
文摘In order to present the microstructures of dynamic recrystallization(DRX) in different deformation zones of hot extruded NiTi shape memory alloy(SMA) pipe coupling,a simulation approach combining finite element method(FEM) with cellular automaton(CA) was developed and the relationship between the macroscopic field variables and the microscopic internal variables was established.The results show that there exists a great distinction among the microstructures in different zones of pipe coupling because deformation histories of these regions are diverse.Large plastic deformation may result in fine recrystallized grains,whereas the recrystallized grains may grow very substantially if there is a rigid translation during the deformation,even if the final plastic strain is very large.As a consequence,the deformation history has a significant influence on the evolution path of the DRX as well as the final microstructures of the DRX,including the morphology,the mean grain size and the recrystallization fraction.
基金Supported by National Key Research and Development Program of China(Grant No.2017YFC0307604)the Talent Foundation of China University of Petroleum(Grant No.Y1215042)
文摘It is significant to numerically investigate thermo-mechanical behaviors of shape memory alloy(SMA)structures undergoing large and uneven deformation for they are used in many engineering fields to meet special requirements To solve the problems of convergence in the numerical simulation on thermo-mechanical behaviors of SMA structures by universal finite element software.This work suppose a finite element method to simulate the super-elasticity and shape memory effect in the SMA structure undergoing large and uneven deformation.Two scalars,named by phase-transition modulus and equivalent stiffness,are defined to make it easy to establish and implement the finite element method for a SMA structure.An incremental constitutive equation is developed to formulate the relationship of stress,strain and temperature in a SMA material based on phase-transition modulus and equivalent stiffness.A phase-transition modulus equation is derived to describe the relationship of phase-transition modulus,stress and temperature in a SMA material during the processes of martensitic phase transition and martensitic inverse phase transition.A finite element equation is established to express the incremental relationship of nodal displacement,external force and temperature change in a finite element discrete structure of SMA.The incremental constitutive equation,phase-transition modulus equation and finite element equation compose the supposed finite element method which simulate the thermo-mechanical behaviors of a SMA structure.Two SMA structures,which undergo large and uneven deformation,are numerically simulated by the supposed finite element method.Results of numerical simulation show that the supposed finite element method can effectively simulate the super-elasticity and shape memory effect of a SMA structure undergoing large and uneven deformation,and is suitable to act as an effective computational tool for the wide applications based on the SMA materials.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA09020402the National Integrate Circuit Research Program of China under Grant No 2009ZX02023-003+1 种基金the National Natural Science Foundation of China under Grant Nos 61261160500,61376006,61401444 and 61504157the Science and Technology Council of Shanghai under Grant Nos 14DZ2294900,15DZ2270900 and 14ZR1447500
文摘An optimized device structure for reducing the RESET current of phase-change random access memory (PCRAM) with blade-type like (BTL) phase change layer is proposed. The electrical thermal analysis of the BTL cell and the blade heater contactor structure by three-dimensional finite element modeling are compared with each other during RESET operation. The simulation results show that the programming region of the phase change layer in the BTL cell is much smaller, and thermal electrical distributions of the BTL cell are more concentrated on the TiN/GST interface. The results indicate that the BTL cell has the superiorities of increasing the heating efficiency, decreasing the power consumption and reducing the RESET current from 0.67mA to 0.32mA. Therefore, the BTL cell will be appropriate for high performance PCRAM device with lower power consumption and lower RESET current.
基金support of the"Strategic Priority Research Program"of the Chinese Academy of Sciences(No.XDA09020402)the National Integrate Circuit Research Program of China(No.2009ZX02023-003)+2 种基金the National Natural Science Foundation of China(Nos.61261160500,61376006,61401444,61504157)the Science and Technology Council of Shanghai(Nos.14DZ2294900,15DZ2270900,14ZR1447500)the National Natural Science Foundation of China(61874178)
文摘The crystallization characteristics of a ubiquitous T-shaped phase change memory(PCM) cell, under SET current pulse and very small disturb current pulse, have been investigated by finite element modelling. As analyzed in this paper, the crystallization region under SET current pulse presents first on the corner of the bottom electron contact(BEC) and then promptly forms a filament shunting down the amorphous phase to achieve the low-resistance state, whereas the tiny disturb current pulse accelerates crystallization at the axis of symmetry in the phase change material. According to the different crystallization paths, a new structure of phase change material layer is proposed to improve the data retention for PCM without impeding SET operation.This structure only requires one or two additional process steps to dope nitrogen element in the center region of phase change material layer to increase the crystallization temperature in this confined region. The electrical-thermal characteristics of PCM cells with incremental doped radius have been analyzed and the best performance is presented when the doped radius is equal to the radius of the BEC.
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, equal channel angular extrusion (ECAE) of nickel-titanium shape memory alloy (NiTi SMA) tube was investigated by means of process experiment, finite element method (FEM) and microscopy. NiTi SMA tube with the steel core in it was inserted into the steel can during ECAE of NiTi SMA tube. Based on rigid-viscoplastic FEM, multiple coupled boundary conditions and multiple constitutive models were used for finite element simulation of ECAE of NiTi SMA tube, where the effective stress field, the effective strain field and the velocity field were obtained. Finite element simulation results are in good accordance with the experimental ones. Finite element simulation results reveal that the velocity field shows the minimum value in the corner of NiTi SMA tube, where severe shear deformation occurs. Microstructural observation results reveal that severe plastic deformation leads to a certain grain orientation as well as occurrence of substructures in the grain interior and dynamic recovery occurs during ECAE of NiTi SMA tube. ECAE of NiTi SMA tube provides a new approach to manufacturing ultrafine-grained NiTi SMA tube.