期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
EXACT SOLUTIONS FOR GENERAL VARIABLE-COEFFICIENT KdV EQUATION 被引量:8
1
作者 Liu Xiqiang Jiang SongGraduate School, China Academy of Engineering and Physics, P.O. Box 2101, Beijing 100088 Dept. of Math., Liaocheng Teachers Univ., Shandong 252000. Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beiji 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2001年第4期377-380,共4页
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and non... By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given. 展开更多
关键词 General variable coefficient KdV equation nonclassical method of symmetry reduction exact solution.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部