The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowsk...The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowski space time is based upon the point set with σ-length on light cone.展开更多
This paper uses the background field method to calculate one-loop divergent corrections to the gauge field propa- gators in noncommutative U(1) gauge theory with scalar fields. It shows that for a massless scalar fi...This paper uses the background field method to calculate one-loop divergent corrections to the gauge field propa- gators in noncommutative U(1) gauge theory with scalar fields. It shows that for a massless scalar field, the gauge field propagators are renormalizable to 02-order, but for a massive scalar field they are renormalizable only to O-order.展开更多
The paper presents a very simple and straight forward yet pure mathematical derivation of the structure of actual spacetime from quantum set theory. This is achieved by utilizing elements of the topological theory of ...The paper presents a very simple and straight forward yet pure mathematical derivation of the structure of actual spacetime from quantum set theory. This is achieved by utilizing elements of the topological theory of cobordism and the Menger-Urysohn dimensional theory in conjunction with von Neumann-Connes dimensional function of Klein-Penrose modular holographic boundary of the E8E8 exceptional Lie group bulk of our universe. The final result is a lucid sharp mental picture, namely that the quantum wave is an empty set representing the surface, i.e. boundary of the zero set quantum particle and in turn quantum spacetime is simply the boundary or the surface of the quantum wave empty set. The essential difference of the quantum wave and quantum spacetime is that the wave is a simple empty set while spacetime is a multi-fractal type of infinitely many empty sets with increasing degrees of emptiness.展开更多
Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine t...Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine the measured ordinary energy density of the cosmos which turns out to be intimately linked to the new theory’s fractal dimension via non-integer irrational Lorentzian-like factor: where is Hardy’s probability of quantum entanglement. Consequently, the energy density is found from a limiting classical kinetic energy to be Here, is ‘tHooft’s renormalon of dimensional regularization. The immediate logical, mathematical and physical implication of this result is that the dark energy density of the cosmos must be in astounding agreement with cosmic measurements and observations.展开更多
Using von Neumann’s continuous geometry in conjunction with A. Connes’ noncommutative geometry an exact mathematical-topological picture of quantum spacetime is developed ab initio. The final result coincides with t...Using von Neumann’s continuous geometry in conjunction with A. Connes’ noncommutative geometry an exact mathematical-topological picture of quantum spacetime is developed ab initio. The final result coincides with the general conclusion of E-infinity theory and previous results obtained in the realm of high energy physics. In particular it is concluded that the quantum particle and the quantum wave spans quantum spacetime and conversely quantum particles and waves mutates from quantum spacetime.展开更多
From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the s...From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space.Based on this relation, we derive the modified Klein–Gordon equation and Dirac equation. We investigate the scalar field and φ4model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space.展开更多
We explain the Dirac–Segal approach to quantum field theory.We study local observables in this approach and the theory of deformations.We found out that this theory of deformation in the second-order coincides with t...We explain the Dirac–Segal approach to quantum field theory.We study local observables in this approach and the theory of deformations.We found out that this theory of deformation in the second-order coincides with the renormalization of the same theory,would it be considered in Polyakov approach.We conjecture that it is still true to all orders.展开更多
We start from a minimal number of generally accepted premises, in particular Hartle-Hawking quantum wave of the universe and von Neumann-Connes’ pointless and self referential spacetime geometry. We then proceed from...We start from a minimal number of generally accepted premises, in particular Hartle-Hawking quantum wave of the universe and von Neumann-Connes’ pointless and self referential spacetime geometry. We then proceed from there to show, using Dvoretzky’s theorem of measure concentration, that the total energy of the universe is divided into two parts, an ordinary energy very small part which we can measure while most of the energy is concentrated as the second part at the boundary of the holographic boundary which we cannot measure in a direct way. Finally the results are shown to imply a resolution of the black hole information paradox without violating the fundamental laws of physics. In this way the main thrust of the two opposing arguments and views, namely that of Hawking on the one side and Susskind as well as tHooft on the other side, is brought to a consistent and compatible coherent unit.展开更多
Dark energy is explained using familiar notions and concepts used in quantum field theory, string theory and the exact mathematical theory of spacetime. The main result of the present work is first a new mathematical ...Dark energy is explained using familiar notions and concepts used in quantum field theory, string theory and the exact mathematical theory of spacetime. The main result of the present work is first a new mathematical definition of pre-quantum spacetime (QST) as a multiset made of infinitely many empty Cantor sets connected to pre-quantum wave empty set (QW) and the pre-quantum particle (QP) zero set via the cobordism equation ∂(QW) = (QP)U(QST). Second, and in turn, this new path of reasoning is used to validate the quantum splitting of Einstein’s E = mc<sup>2</sup> into the sum of the ordinary energy E = mc<sup>2</sup>/22 of the quantum particle and the dark energy E = mc<sup>2</sup>(21/22) of the quantum wave, used predominantly to explain the observed accelerated expansion of the universe.展开更多
The work gives a natural explanation for the ordinary and dark energy density of the cosmos based on conventional quantum mechanical considerations which dates back as far as the early days of the quantum theory and s...The work gives a natural explanation for the ordinary and dark energy density of the cosmos based on conventional quantum mechanical considerations which dates back as far as the early days of the quantum theory and specifically the work of Max Planck who seems to be the first to propose the possibility of a half quanta corresponding to the ground state, i.e. the energy zero point of the vacuum. Combining these old insights with the relatively new results of Hardy’s quantum entanglement and Witten’s topological quantum field theory as well as the fractal version of M-theory, we find a remarkably simple general theory for dark energy and the Casimir effect.展开更多
We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 Kähler manifold to explain the mysterious nature of dark matter and its cou...We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 Kähler manifold to explain the mysterious nature of dark matter and its coupling to the pure dark energy density of the cosmos. The analogous situations in the case of a Kerr black hole as well as the redundant components of the Riemannian tensor are pointed out and the final result was found to be in complete agreement with all previous theoretical ones as well as all recent accurate measurements and cosmic observations. We conclude by commenting briefly on the Cantorian model of Zitterbewegung and the connection between Olbers’s paradox and dark energy.展开更多
文摘The anomalous dimensions of the quantum fields are the Hausdorff dimensiongrad. The present candidate of the renormalization constant is the generalized Cantor discontinuum. The Hausdorff dimensiongrad of the Minkowski space time is based upon the point set with σ-length on light cone.
基金Project supported by the National Natural Science Foundation of China (Grant No. 90303003)
文摘This paper uses the background field method to calculate one-loop divergent corrections to the gauge field propa- gators in noncommutative U(1) gauge theory with scalar fields. It shows that for a massless scalar field, the gauge field propagators are renormalizable to 02-order, but for a massive scalar field they are renormalizable only to O-order.
文摘The paper presents a very simple and straight forward yet pure mathematical derivation of the structure of actual spacetime from quantum set theory. This is achieved by utilizing elements of the topological theory of cobordism and the Menger-Urysohn dimensional theory in conjunction with von Neumann-Connes dimensional function of Klein-Penrose modular holographic boundary of the E8E8 exceptional Lie group bulk of our universe. The final result is a lucid sharp mental picture, namely that the quantum wave is an empty set representing the surface, i.e. boundary of the zero set quantum particle and in turn quantum spacetime is simply the boundary or the surface of the quantum wave empty set. The essential difference of the quantum wave and quantum spacetime is that the wave is a simple empty set while spacetime is a multi-fractal type of infinitely many empty sets with increasing degrees of emptiness.
文摘Starting from Witten’s eleven dimensional M-theory, the present work develops in an analogous way a corresponding dimensional fractal version where . Subsequently, the new fractal formalism is utilized to determine the measured ordinary energy density of the cosmos which turns out to be intimately linked to the new theory’s fractal dimension via non-integer irrational Lorentzian-like factor: where is Hardy’s probability of quantum entanglement. Consequently, the energy density is found from a limiting classical kinetic energy to be Here, is ‘tHooft’s renormalon of dimensional regularization. The immediate logical, mathematical and physical implication of this result is that the dark energy density of the cosmos must be in astounding agreement with cosmic measurements and observations.
文摘Using von Neumann’s continuous geometry in conjunction with A. Connes’ noncommutative geometry an exact mathematical-topological picture of quantum spacetime is developed ab initio. The final result coincides with the general conclusion of E-infinity theory and previous results obtained in the realm of high energy physics. In particular it is concluded that the quantum particle and the quantum wave spans quantum spacetime and conversely quantum particles and waves mutates from quantum spacetime.
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2013ZM0109
文摘From the inspection of noncommutative quantum mechanics, we obtain an approximate equivalent relation for the energy dependence of the Planck constant in the noncommutative space, which means a minimal length of the space. We find that this relation is reasonable and it can inherit the main properties of the noncommutative space.Based on this relation, we derive the modified Klein–Gordon equation and Dirac equation. We investigate the scalar field and φ4model and then quantum electrodynamics in our theory, and derive the corresponding Feynman rules. These results may be considered as reasonable approximations to those of noncommutative quantum field theory. Our theory also shows a connection between the space with a minimal length and the noncommutative space.
文摘We explain the Dirac–Segal approach to quantum field theory.We study local observables in this approach and the theory of deformations.We found out that this theory of deformation in the second-order coincides with the renormalization of the same theory,would it be considered in Polyakov approach.We conjecture that it is still true to all orders.
文摘We start from a minimal number of generally accepted premises, in particular Hartle-Hawking quantum wave of the universe and von Neumann-Connes’ pointless and self referential spacetime geometry. We then proceed from there to show, using Dvoretzky’s theorem of measure concentration, that the total energy of the universe is divided into two parts, an ordinary energy very small part which we can measure while most of the energy is concentrated as the second part at the boundary of the holographic boundary which we cannot measure in a direct way. Finally the results are shown to imply a resolution of the black hole information paradox without violating the fundamental laws of physics. In this way the main thrust of the two opposing arguments and views, namely that of Hawking on the one side and Susskind as well as tHooft on the other side, is brought to a consistent and compatible coherent unit.
文摘Dark energy is explained using familiar notions and concepts used in quantum field theory, string theory and the exact mathematical theory of spacetime. The main result of the present work is first a new mathematical definition of pre-quantum spacetime (QST) as a multiset made of infinitely many empty Cantor sets connected to pre-quantum wave empty set (QW) and the pre-quantum particle (QP) zero set via the cobordism equation ∂(QW) = (QP)U(QST). Second, and in turn, this new path of reasoning is used to validate the quantum splitting of Einstein’s E = mc<sup>2</sup> into the sum of the ordinary energy E = mc<sup>2</sup>/22 of the quantum particle and the dark energy E = mc<sup>2</sup>(21/22) of the quantum wave, used predominantly to explain the observed accelerated expansion of the universe.
文摘The work gives a natural explanation for the ordinary and dark energy density of the cosmos based on conventional quantum mechanical considerations which dates back as far as the early days of the quantum theory and specifically the work of Max Planck who seems to be the first to propose the possibility of a half quanta corresponding to the ground state, i.e. the energy zero point of the vacuum. Combining these old insights with the relatively new results of Hardy’s quantum entanglement and Witten’s topological quantum field theory as well as the fractal version of M-theory, we find a remarkably simple general theory for dark energy and the Casimir effect.
文摘We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 Kähler manifold to explain the mysterious nature of dark matter and its coupling to the pure dark energy density of the cosmos. The analogous situations in the case of a Kerr black hole as well as the redundant components of the Riemannian tensor are pointed out and the final result was found to be in complete agreement with all previous theoretical ones as well as all recent accurate measurements and cosmic observations. We conclude by commenting briefly on the Cantorian model of Zitterbewegung and the connection between Olbers’s paradox and dark energy.