The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error est...The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error estimates are obtained by using some novel approaches and techniques. The method proposed in this article is robust in the sense that the convergence estimates in the energy and L^2-norms are independent-of the Lame parameter λ.展开更多
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the v...A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.展开更多
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral fin...For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.展开更多
We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is r...We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is robust and optimal, in the sense that the convergence estimate in the energy is independent of the Lame parameter λ.展开更多
In this paper, the quadratic nonconforming brick element (MSLK element) intro- duced in [10] is used for the 3D Stokes equations. The instability for the mixed element pair MSLK-P1 is analyzed, where the vector-valu...In this paper, the quadratic nonconforming brick element (MSLK element) intro- duced in [10] is used for the 3D Stokes equations. The instability for the mixed element pair MSLK-P1 is analyzed, where the vector-valued MSLK element approximates the velocity and the piecewise P1 element approximates the pressure. As a cure, we adopt the piecewise P1 macroelement to discretize the pressure instead of the standard piecewise P1 element on cuboid meshes. This new pair is stable and the optimal error estimate is achieved. Numerical examples verify our theoretical analysis.展开更多
Two new locking-free nonconforming finite elements for the pure displacement planar elasticity problem are presented. Convergence rates of the elements are uniformly optimal with respect to A. The energy norm and L2 n...Two new locking-free nonconforming finite elements for the pure displacement planar elasticity problem are presented. Convergence rates of the elements are uniformly optimal with respect to A. The energy norm and L2 norm errors are proved to be O(h2) and O(h3), respectively. Numerical tests confirm the theoretical analysis.展开更多
The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and an...The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. However, since the conforming finite element method (CFEM) requires a strong continuity, it is not easy to construct such finite elements for the complex partial differential equations. Thus, the nonconforming finite element method (NCFEM) is more appealing computationally due to better stability and flexibility properties compared to CFEM. The objective of this paper is to establish a general superconvergence result for the nonconforming finite element approximations for second-order elliptic problems by L2-projection methods by applying the idea presented in Wang. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-NCFEM for anyone to use and to study. The results of numerical experiments show great promise for the robustness, reliability, flexibility and accuracy of superconvergence in NCFEM by L2- projections.展开更多
In this paper, Crouzeix-Raveart type nonconforming rectangular element is applied to the Mumford-Shah functional for image segmentation subjected to Robin boundary conditions. Meanwhile, by using the special orthogona...In this paper, Crouzeix-Raveart type nonconforming rectangular element is applied to the Mumford-Shah functional for image segmentation subjected to Robin boundary conditions. Meanwhile, by using the special orthogonality of this element's basic functions, the convergence analysis for L2-norm and broken H1-norm with semi-implicit scheme is presented. And the error order is improved to the optimal, too.展开更多
Two nonconforming finite element Stokes complexes starting from the conforming Lagrange element and ending with the nonconforming P_1-P_0 element for the Stokes equation in three dimensions are studied.Commutative dia...Two nonconforming finite element Stokes complexes starting from the conforming Lagrange element and ending with the nonconforming P_1-P_0 element for the Stokes equation in three dimensions are studied.Commutative diagrams are also shown by combining nonconforming finite element Stokes complexes and interpolation operators.The lower order H(gradcurl)-nonconforming finite element only has 14 degrees of freedom,whose basis functions are explicitly given in terms of the barycentric coordinates.The H(gradcurl)-nonconforming elements are applied to solve the quad-curl problem,and the optimal convergence is derived.By the nonconforming finite element Stokes complexes,the mixed finite element methods of the quad-curl problem are decoupled into two mixed methods of the Maxwell equation and the nonconforming P_1-P_0 element method for the Stokes equation,based on which a fast solver is discussed.Numerical results are provided to verify the theoretical convergence rates.展开更多
An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approxi...An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approximate schemes, which are the same as the traditional finite element methods. In addition, the global superconvergence is derived through the postprocessing technique. Numerical experiments are included to illustrate the feasibility of the proposed method.展开更多
Abstract In this paper, we apply EQ1^rot nonconforming finite element to approximate Signorini problem. If 5 the exact solution u EQ1^rot, the error estimate of order O(h) about the broken energy norm is obtained f...Abstract In this paper, we apply EQ1^rot nonconforming finite element to approximate Signorini problem. If 5 the exact solution u EQ1^rot, the error estimate of order O(h) about the broken energy norm is obtained for quadrilateral meshes satisfying regularity assumption and bi-section condition. Furthermore, the superconver- gence results of order EQ1^rot are derived for rectangular meshes. Numerical results are presented to confirm the considered theory.展开更多
The main aim of this paper is to study the superconvergence accuracy analysis of the famous ACM's nonconforming finite element for biharmonic equation under anisotropic meshes. By using some novel approaches and tech...The main aim of this paper is to study the superconvergence accuracy analysis of the famous ACM's nonconforming finite element for biharmonic equation under anisotropic meshes. By using some novel approaches and techniques, the optimal anisotropic interpolation error and consistency error estimates are obtained. The global error is of order O(h^2). Lastly, some numerical tests are presented to verify the theoretical analysis.展开更多
A Crank-Nicolson scheme based on nonconforming finite element with moving grids is dis- cussed for a class of parabolic integro-differential equations under anisotropic meshes. The corresponding convergence analysis i...A Crank-Nicolson scheme based on nonconforming finite element with moving grids is dis- cussed for a class of parabolic integro-differential equations under anisotropic meshes. The corresponding convergence analysis is presented and the error estimates are obtained by using the interpolation operator instead of the conventional elliptic projection which is an indispensable tool in the convergence analysis of traditional finite element methods in previous literature.展开更多
EQrot nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, t...EQrot nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2) one order higher than its interpolation error O(h), the superclose results of order O(h2) in broken Hi-norm are obtained. At the same time, the global superconvergence in broken Hi-norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQrot element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature.展开更多
The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonc...The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.展开更多
This paper is devoted to analysis of the nonconforming element approximation to the obstacle problem, and improvement and correction of the results in [11], [12].
In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolat...In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order (O(h2), is also proposed.展开更多
This paper is devoted to a new error analysis of nonconforming finite element methods.Compared with the classic error analysis in literature,only weak continuity,the F-E-M-Test for nonconforming finite element spaces,...This paper is devoted to a new error analysis of nonconforming finite element methods.Compared with the classic error analysis in literature,only weak continuity,the F-E-M-Test for nonconforming finite element spaces,and basic Hm regularity for exact solutions of 2m-th order elliptic problems under consideration are assumed.The analysis is motivated by ideas from a posteriori error estimates and projection average operators.One main ingredient is a novel decomposition for some key average terms on(n.1)-dimensional faces by introducing a piecewise constant projection,which defines the generalization to more general nonconforming finite elements of the results in literature.The analysis and results herein are conjectured to apply for all nonconforming finite elements in literature.展开更多
基金The research is supported by NSF of China (10371113 10471133)
文摘The main aim of this article is to study the approximation of a locking-free anisotropic nonconforming finite element for the pure displacement boundary value problem of planar linear elasticity. The optimal error estimates are obtained by using some novel approaches and techniques. The method proposed in this article is robust in the sense that the convergence estimates in the energy and L^2-norms are independent-of the Lame parameter λ.
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金supported by the National Natural Science Foundation of China (Nos. 10971203 and 11271340)the Research Fund for the Doctoral Program of Higher Education of China (No. 20094101110006)
文摘A modified penalty scheme is discussed for solving the Stokes problem with the Crouzeix-Raviart type nonconforming linear triangular finite element. By the L^2 projection method, the superconvergence results for the velocity and pressure are obtained with a penalty parameter larger than that of the classical penalty scheme. The numerical experiments are carried out to confirm the theoretical results.
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
基金supported by the National Natural Science Foundation of China(No.11271273)
文摘For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.
基金Supported by the NSF of the Education Henan(200510078005)
文摘We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is robust and optimal, in the sense that the convergence estimate in the energy is independent of the Lame parameter λ.
基金Supported by the National Natural Science Foundation of China(11171052,11301053,61328206 and 61272371)the Fundamental Research Funds for the Central Universities
文摘In this paper, the quadratic nonconforming brick element (MSLK element) intro- duced in [10] is used for the 3D Stokes equations. The instability for the mixed element pair MSLK-P1 is analyzed, where the vector-valued MSLK element approximates the velocity and the piecewise P1 element approximates the pressure. As a cure, we adopt the piecewise P1 macroelement to discretize the pressure instead of the standard piecewise P1 element on cuboid meshes. This new pair is stable and the optimal error estimate is achieved. Numerical examples verify our theoretical analysis.
基金Project supported by the National Natural Science Foundation of China (Nos. 10771198 and 11071226)the Foundation of International Science and Technology Cooperation of Henan Province
文摘Two new locking-free nonconforming finite elements for the pure displacement planar elasticity problem are presented. Convergence rates of the elements are uniformly optimal with respect to A. The energy norm and L2 norm errors are proved to be O(h2) and O(h3), respectively. Numerical tests confirm the theoretical analysis.
文摘The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. However, since the conforming finite element method (CFEM) requires a strong continuity, it is not easy to construct such finite elements for the complex partial differential equations. Thus, the nonconforming finite element method (NCFEM) is more appealing computationally due to better stability and flexibility properties compared to CFEM. The objective of this paper is to establish a general superconvergence result for the nonconforming finite element approximations for second-order elliptic problems by L2-projection methods by applying the idea presented in Wang. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-NCFEM for anyone to use and to study. The results of numerical experiments show great promise for the robustness, reliability, flexibility and accuracy of superconvergence in NCFEM by L2- projections.
文摘In this paper, Crouzeix-Raveart type nonconforming rectangular element is applied to the Mumford-Shah functional for image segmentation subjected to Robin boundary conditions. Meanwhile, by using the special orthogonality of this element's basic functions, the convergence analysis for L2-norm and broken H1-norm with semi-implicit scheme is presented. And the error order is improved to the optimal, too.
基金supported by National Natural Science Foundation of China (Grant Nos.12171300 and 11771338)the Natural Science Foundation of Shanghai (Grant No.21ZR1480500)the Fundamental Research Funds for the Central Universities (Grant No.2019110066)。
文摘Two nonconforming finite element Stokes complexes starting from the conforming Lagrange element and ending with the nonconforming P_1-P_0 element for the Stokes equation in three dimensions are studied.Commutative diagrams are also shown by combining nonconforming finite element Stokes complexes and interpolation operators.The lower order H(gradcurl)-nonconforming finite element only has 14 degrees of freedom,whose basis functions are explicitly given in terms of the barycentric coordinates.The H(gradcurl)-nonconforming elements are applied to solve the quad-curl problem,and the optimal convergence is derived.By the nonconforming finite element Stokes complexes,the mixed finite element methods of the quad-curl problem are decoupled into two mixed methods of the Maxwell equation and the nonconforming P_1-P_0 element method for the Stokes equation,based on which a fast solver is discussed.Numerical results are provided to verify the theoretical convergence rates.
基金supported by the National Natural Science Foundation of China No.10671184
文摘An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approximate schemes, which are the same as the traditional finite element methods. In addition, the global superconvergence is derived through the postprocessing technique. Numerical experiments are included to illustrate the feasibility of the proposed method.
基金supported by National Natural Science Foundation of China (Grant Nos.10971203 and 11271340)Research Fund for the Doctoral Program of Higher Education of China (Grant No.20094101110006)
文摘Abstract In this paper, we apply EQ1^rot nonconforming finite element to approximate Signorini problem. If 5 the exact solution u EQ1^rot, the error estimate of order O(h) about the broken energy norm is obtained for quadrilateral meshes satisfying regularity assumption and bi-section condition. Furthermore, the superconver- gence results of order EQ1^rot are derived for rectangular meshes. Numerical results are presented to confirm the considered theory.
文摘The main aim of this paper is to study the superconvergence accuracy analysis of the famous ACM's nonconforming finite element for biharmonic equation under anisotropic meshes. By using some novel approaches and techniques, the optimal anisotropic interpolation error and consistency error estimates are obtained. The global error is of order O(h^2). Lastly, some numerical tests are presented to verify the theoretical analysis.
基金This research is supported by the National Natural Science Foundation of China under Grant Nos. 10671184 and 10971203.
文摘A Crank-Nicolson scheme based on nonconforming finite element with moving grids is dis- cussed for a class of parabolic integro-differential equations under anisotropic meshes. The corresponding convergence analysis is presented and the error estimates are obtained by using the interpolation operator instead of the conventional elliptic projection which is an indispensable tool in the convergence analysis of traditional finite element methods in previous literature.
基金Supported by the National Natural Science Foundation of China (Nos. 10971203 11101381)+3 种基金Tianyuan Mathe-matics Foundation of National Natural Science Foundation of China (No. 11026154)Natural Science Foundation of Henan Province (No. 112300410026)Natural Science Foundation of the Education Department of Henan Province (Nos. 2011A110020 12A110021)
文摘EQrot nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2) one order higher than its interpolation error O(h), the superclose results of order O(h2) in broken Hi-norm are obtained. At the same time, the global superconvergence in broken Hi-norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQrot element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature.
基金supported by National Natural Science Foundation of China (Grant No.11101415)the National Center for Mathematics and Interdisciplinary Sciences,CAS
文摘The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.
基金The project was supported by the National Natural Science Foundation of China
文摘This paper is devoted to analysis of the nonconforming element approximation to the obstacle problem, and improvement and correction of the results in [11], [12].
基金The work was supported by the National Natural Science Foundation of China (10871011).
文摘In this paper, a class of rectangular finite elements for 2m-th-oder elliptic boundary value problems in n-dimension (m, n ≥1) is proposed in a canonical fashion, which includes the (2m - 1)-th Hermite interpolation element (n = 1), the n-linear finite element (m = 1) and the Adini element (m = 2). A nonconforming triangular finite element for the plate bending problem, with convergent order (O(h2), is also proposed.
基金supported by National Natural Science Foundation of China(Grant Nos.11031006 and 11271035)
文摘This paper is devoted to a new error analysis of nonconforming finite element methods.Compared with the classic error analysis in literature,only weak continuity,the F-E-M-Test for nonconforming finite element spaces,and basic Hm regularity for exact solutions of 2m-th order elliptic problems under consideration are assumed.The analysis is motivated by ideas from a posteriori error estimates and projection average operators.One main ingredient is a novel decomposition for some key average terms on(n.1)-dimensional faces by introducing a piecewise constant projection,which defines the generalization to more general nonconforming finite elements of the results in literature.The analysis and results herein are conjectured to apply for all nonconforming finite elements in literature.