A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral fin...For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.展开更多
We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is r...We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is robust and optimal, in the sense that the convergence estimate in the energy is independent of the Lame parameter λ.展开更多
The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and an...The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. However, since the conforming finite element method (CFEM) requires a strong continuity, it is not easy to construct such finite elements for the complex partial differential equations. Thus, the nonconforming finite element method (NCFEM) is more appealing computationally due to better stability and flexibility properties compared to CFEM. The objective of this paper is to establish a general superconvergence result for the nonconforming finite element approximations for second-order elliptic problems by L2-projection methods by applying the idea presented in Wang. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-NCFEM for anyone to use and to study. The results of numerical experiments show great promise for the robustness, reliability, flexibility and accuracy of superconvergence in NCFEM by L2- projections.展开更多
In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation o...In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.展开更多
The convergences ununiformly and uniformly are established for the nonconforming finite element methods for the second order elliptic problem with the lowest regularity, i.e., in the case that the solution u is an ele...The convergences ununiformly and uniformly are established for the nonconforming finite element methods for the second order elliptic problem with the lowest regularity, i.e., in the case that the solution u is an element of H-0(1)(Omega) only.展开更多
In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary...In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jaeobi or Gauss-Seidel smoothers per- formed on local nodes on coarse meshes and global nodes on the finest mesh. It is shown that the local multilevel methods are optimal, i.e., the convergence rate of the multilevel methods is independent of the mesh sizes and mesh levels. Numerical experiments are given to confirm the theoretical results.展开更多
Optimal convergence rates of adaptive finite element methods are well understood in terms of the axioms of adaptivity.One key ingredient is the discrete reliability of a residualbased a posteriori error estimator,whic...Optimal convergence rates of adaptive finite element methods are well understood in terms of the axioms of adaptivity.One key ingredient is the discrete reliability of a residualbased a posteriori error estimator,which controls the error of two discrete finite element solutions based on two nested triangulations.In the error analysis of nonconforming finite element methods,like the Crouzeix-Raviart or Morley finite element schemes,the difference of the piecewise derivatives of discontinuous approximations to the distributional gradients of global Sobolev functions plays a dominant role and is the object of this paper.The nonconforming interpolation operator,which comes natural with the definition of the aforementioned nonconforming finite element in the sense of Ciarlet,allows for stability and approximation properties that enable direct proofs of the reliability for the residual that monitors the equilibrium condition.The novel approach of this paper is the suggestion of a right-inverse of this interpolation operator in conforming piecewise polynomials to design a nonconforming approximation of a given coarse-grid approximation on a refined triangulation.The results of this paper allow for simple proofs of the discrete reliability in any space dimension and multiply connected domains on general shape-regular triangulations beyond newest-vertex bisection of simplices.Particular attention is on optimal constants in some standard discrete estimates listed in the appendices.展开更多
The use of finite element method leads to replacing the initial domain by an approaching domain. Under some appropriate assumptions, we prove that there exists a W1,+∞-diffeomorphism from the original domain to the a...The use of finite element method leads to replacing the initial domain by an approaching domain. Under some appropriate assumptions, we prove that there exists a W1,+∞-diffeomorphism from the original domain to the approaching domain.展开更多
In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N<...In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N</em> ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method.展开更多
In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bil...In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.展开更多
A nonconforming H^1-Calerkin mixed finite element method is analyzed for Sobolev equations on anisotropic meshes. The error estimates are obtained without using Ritz-Volterra projection.
We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the converg...We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from O(h3/4) to quasi-optimal O(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available, the convergence rate can be improved to the optimal O(h) as expected by the linear approximation.展开更多
We propose and analyze a new family of nonconforming finite elements for the three-dimensional quad-curl problem.The proposed finite element spaces are subspaces of H(curl),but not of H(grad curl),which are different ...We propose and analyze a new family of nonconforming finite elements for the three-dimensional quad-curl problem.The proposed finite element spaces are subspaces of H(curl),but not of H(grad curl),which are different from the existing nonconforming ones[10,12,13].The well-posedness of the discrete problem is proved and optimal error estimates in discrete H(grad curl)norm,H(curl)norm and L2 norm are derived.Numerical experiments are provided to illustrate the good performance of the method and confirm our theoretical predictions.展开更多
This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated Q_(1) and Crouzeix-Raviart elements of the Stokes eigenvalue problem.T...This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated Q_(1) and Crouzeix-Raviart elements of the Stokes eigenvalue problem.The main ingredient are a novel and sharp L^(2) error estimate of discrete eigenfunctions,and a new error analysis of nonconforming finite element methods.展开更多
In this paper,we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions.The error estimates of the eigenvalue and eigenfunction approximation...In this paper,we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions.The error estimates of the eigenvalue and eigenfunction approximation are given,respectively.Finally,some numerical examples are provided to validate the theoretical results.展开更多
We consider, in this paper, the trace averaging domain decomposition method for the second order self-adjoint elliptic problems discretized by a class of nonconforming finite elements, which is only continuous at the ...We consider, in this paper, the trace averaging domain decomposition method for the second order self-adjoint elliptic problems discretized by a class of nonconforming finite elements, which is only continuous at the nodes of the quasi-uniform mesh. We show its geometric convergence and present the dependence of the convergence factor on the relaxation factor, the subdomain diameter H and the mesh parameter h. In essence;, this method is equivalent to the simple iterative method for the preconditioned capacitance equation. The preconditioner implied in this iteration is easily invertible and can be applied to preconditioning the capacitance matrix with the condition number no more than O((1 + In H/h)max(1 + H-2, 1 + In H/h)).展开更多
An optimal order of the multigrid method is given in energy-norm for the nonconforming finite element for solving the biharmonic equation, by using the nodal interpolation operator as the transfer operator between grids.
In this paper, we propose two families of nonconforming finite elements on n-rectangle meshes of any dimension to solve the sixth-order elliptic equations. The unisolvent property and the approximation ability of the ...In this paper, we propose two families of nonconforming finite elements on n-rectangle meshes of any dimension to solve the sixth-order elliptic equations. The unisolvent property and the approximation ability of the new finite element spaces are established. A new mechanism, called the exchange of sub-rectangles, for investigating the weak continuities of the proposed elements is discovered. With the help of some conforming relatives for the H^(3) problems, we establish the quasi-optimal error estimate for the triharmonic equation in the broken H^(3) norm of any dimension. The theoretical results are validated further by the numerical tests in both 2D and 3D situations.展开更多
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
基金supported by the National Natural Science Foundation of China(No.11271273)
文摘For transient Naiver-Stokes problems, a stabilized nonconforming finite element method is presented, focusing on two pairs inf-sup unstable finite element spaces, i.e., pNC/pNC triangular and pNQ/pNQ quadrilateral finite element spaces. The semi- and full-discrete schemes of the stabilized method are studied based on the pressure projection and a variational multi-scale method. It has some attractive features: avoiding higher-order derivatives and edge-based data structures, adding a discrete velocity term only on the fine scale, being effective for high Reynolds number fluid flows, and avoiding increased computation cost. For the full-discrete scheme, it has second-order estimations of time and is unconditionally stable. The presented numerical results agree well with the theoretical results.
基金Supported by the NSF of the Education Henan(200510078005)
文摘We propose a locking-free nonconforming finite element method to solve for the displacement variation in the pure displacement boundary value problem of planar linear elasticity. The method proposed in this paper is robust and optimal, in the sense that the convergence estimate in the energy is independent of the Lame parameter λ.
文摘The superconvergence in the finite element method is a phenomenon in which the fi-nite element approximation converges to the exact solution at a rate higher than the optimal order error estimate. Wang proposed and analyzed superconvergence of the conforming finite element method by L2-projections. However, since the conforming finite element method (CFEM) requires a strong continuity, it is not easy to construct such finite elements for the complex partial differential equations. Thus, the nonconforming finite element method (NCFEM) is more appealing computationally due to better stability and flexibility properties compared to CFEM. The objective of this paper is to establish a general superconvergence result for the nonconforming finite element approximations for second-order elliptic problems by L2-projection methods by applying the idea presented in Wang. MATLAB codes are published at https://github.com/annaleeharris/Superconvergence-NCFEM for anyone to use and to study. The results of numerical experiments show great promise for the robustness, reliability, flexibility and accuracy of superconvergence in NCFEM by L2- projections.
文摘In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H<sup>1</sup> and L<sup>2</sup> norms. Finally, some numerical experiments are carried out to support the theoretical results.
文摘The convergences ununiformly and uniformly are established for the nonconforming finite element methods for the second order elliptic problem with the lowest regularity, i.e., in the case that the solution u is an element of H-0(1)(Omega) only.
基金Acknowledgements. The work of the first author was supported by the National Basic Research Program under the Grant 2011CB30971 and National Science Foundation of China (11171335). The work of the second author was supported by the National Natural Science Foundation of China (Grant No. 11201394) and the Fundamental Research Funds for the Central Universities (Grant No. 2012121003).
文摘In this paper, a local multilevel product algorithm and its additive version are con- sidered for linear systems arising from adaptive nonconforming P1 finite element approx- imations of second order elliptic boundary value problems. The abstract Schwarz theory is applied to analyze the multilevel methods with Jaeobi or Gauss-Seidel smoothers per- formed on local nodes on coarse meshes and global nodes on the finest mesh. It is shown that the local multilevel methods are optimal, i.e., the convergence rate of the multilevel methods is independent of the mesh sizes and mesh levels. Numerical experiments are given to confirm the theoretical results.
文摘Optimal convergence rates of adaptive finite element methods are well understood in terms of the axioms of adaptivity.One key ingredient is the discrete reliability of a residualbased a posteriori error estimator,which controls the error of two discrete finite element solutions based on two nested triangulations.In the error analysis of nonconforming finite element methods,like the Crouzeix-Raviart or Morley finite element schemes,the difference of the piecewise derivatives of discontinuous approximations to the distributional gradients of global Sobolev functions plays a dominant role and is the object of this paper.The nonconforming interpolation operator,which comes natural with the definition of the aforementioned nonconforming finite element in the sense of Ciarlet,allows for stability and approximation properties that enable direct proofs of the reliability for the residual that monitors the equilibrium condition.The novel approach of this paper is the suggestion of a right-inverse of this interpolation operator in conforming piecewise polynomials to design a nonconforming approximation of a given coarse-grid approximation on a refined triangulation.The results of this paper allow for simple proofs of the discrete reliability in any space dimension and multiply connected domains on general shape-regular triangulations beyond newest-vertex bisection of simplices.Particular attention is on optimal constants in some standard discrete estimates listed in the appendices.
基金Partially supported by Professor Xu Yuesheng and his program "One hundred distinguished Young Scientists" Partially supported by "Programme Sino-Francais de Recherches Advancees(PRA).
文摘The use of finite element method leads to replacing the initial domain by an approaching domain. Under some appropriate assumptions, we prove that there exists a W1,+∞-diffeomorphism from the original domain to the approaching domain.
文摘In this paper, we develop an a-priori error analysis of a new unified mixed finite element method for the coupling of fluid flow with porous media flow in R<sup><em>N</em></sup>, <em>N</em> ∈ {2,3}, on isotropic meshes. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers-Joseph-Saffman law. The approach utilizes a modification of the Darcy problem which allows us to apply a variant nonconforming Crouzeix-Raviart finite element to the whole coupled Stokes-Darcy problem. The well-posedness of the finite element scheme and its convergence analysis are derived. Finally, the numerical experiments are presented, which confirm the excellent stability and accuracy of our method.
基金supported in part by the National Basic Research Program (2007CB814906)the National Natural Science Foundation of China (10471103 and 10771158)+2 种基金Social Science Foundation of the Ministry of Education of China (Numerical methods for convertible bonds, 06JA630047)Tianjin Natural Science Foundation (07JCYBJC14300)the National Science Foundation under Grant No. EAR-0934747
文摘This article summarizes our recent work on uniform error estimates for various finite elementmethods for time-dependent advection-diffusion equations.
基金Supported by the National Natural Science Foundation of China(No.10971203,11271340,11101384)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘In this paper, a new splitting positive definite nonconforming mixed finite element method is proposed for pseudo-hyperbolic equations, in which a quasi-Wilson quadrilateral element is used for the flux p, and the bilinear element is used for u. Superconvergence results in ||·||div,h norm for p and optimal error estimates in L2 norm for u are derived for both semi-discrete and fully discrete schemes under almost uniform meshes.
基金Supported by the National Natural Science Foundation of China(No.10671184).
文摘A nonconforming H^1-Calerkin mixed finite element method is analyzed for Sobolev equations on anisotropic meshes. The error estimates are obtained without using Ritz-Volterra projection.
文摘We present the Crouzeix-Raviart linear nonconforming finite element approximation of the variational inequality resulting from Signorini problem. We show if the displacement field is of H2 regularity, then the convergence rate can be improved from O(h3/4) to quasi-optimal O(h|log h|1/4) with respect to the energy norm as that of the continuous linear finite element approximation. If stronger but reasonable regularity is available, the convergence rate can be improved to the optimal O(h) as expected by the linear approximation.
基金supported in part by the National Natural Science Foundation of China grant NSFC 12131005.
文摘We propose and analyze a new family of nonconforming finite elements for the three-dimensional quad-curl problem.The proposed finite element spaces are subspaces of H(curl),but not of H(grad curl),which are different from the existing nonconforming ones[10,12,13].The well-posedness of the discrete problem is proved and optimal error estimates in discrete H(grad curl)norm,H(curl)norm and L2 norm are derived.Numerical experiments are provided to illustrate the good performance of the method and confirm our theoretical predictions.
基金The author would like to thank Prof.Shangyou Zhang for helping the numerical experiments.The author was supported by the NSFC under Grants Nos.11571023 and 11401015.
文摘This paper is a generalization of some recent results concerned with the lower bound property of eigenvalues produced by both the enriched rotated Q_(1) and Crouzeix-Raviart elements of the Stokes eigenvalue problem.The main ingredient are a novel and sharp L^(2) error estimate of discrete eigenfunctions,and a new error analysis of nonconforming finite element methods.
基金Xia Ji is supported by the National Natural Science Foundation of China(No.11271018,No.91230203)the Special Funds for National Basic Research Program of China(973 Program 2012CB025904 and 863 Program 2012AA01A309)+1 种基金the national Center for Mathematics and Interdisciplinary Science,CAS.Hehu Xie is supported in part by the National Natural Science Foundations of China(NSFC 91330202,11001259,11371026,11031006,2011CB309703)the national Center for Mathematics and Interdisciplinary Science,CAS,the President Foundation of AMSS-CAS。
文摘In this paper,we analyze a nonconforming finite element method for the computation of transmission eigenvalues and the corresponding eigenfunctions.The error estimates of the eigenvalue and eigenfunction approximation are given,respectively.Finally,some numerical examples are provided to validate the theoretical results.
文摘We consider, in this paper, the trace averaging domain decomposition method for the second order self-adjoint elliptic problems discretized by a class of nonconforming finite elements, which is only continuous at the nodes of the quasi-uniform mesh. We show its geometric convergence and present the dependence of the convergence factor on the relaxation factor, the subdomain diameter H and the mesh parameter h. In essence;, this method is equivalent to the simple iterative method for the preconditioned capacitance equation. The preconditioner implied in this iteration is easily invertible and can be applied to preconditioning the capacitance matrix with the condition number no more than O((1 + In H/h)max(1 + H-2, 1 + In H/h)).
文摘An optimal order of the multigrid method is given in energy-norm for the nonconforming finite element for solving the biharmonic equation, by using the nodal interpolation operator as the transfer operator between grids.
基金supported in part by the National Natural Science Foundation of China(Grant No.12222101).
文摘In this paper, we propose two families of nonconforming finite elements on n-rectangle meshes of any dimension to solve the sixth-order elliptic equations. The unisolvent property and the approximation ability of the new finite element spaces are established. A new mechanism, called the exchange of sub-rectangles, for investigating the weak continuities of the proposed elements is discovered. With the help of some conforming relatives for the H^(3) problems, we establish the quasi-optimal error estimate for the triharmonic equation in the broken H^(3) norm of any dimension. The theoretical results are validated further by the numerical tests in both 2D and 3D situations.