期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Randomized Generalized Singular Value Decomposition 被引量:1
1
作者 Wei Wei Hui Zhang +1 位作者 Xi Yang Xiaoping Chen 《Communications on Applied Mathematics and Computation》 2021年第1期137-156,共20页
The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memo... The generalized singular value decomposition(GSVD)of two matrices with the same number of columns is a very useful tool in many practical applications.However,the GSVD may suffer from heavy computational time and memory requirement when the scale of the matrices is quite large.In this paper,we use random projections to capture the most of the action of the matrices and propose randomized algorithms for computing a low-rank approximation of the GSVD.Serval error bounds of the approximation are also presented for the proposed randomized algorithms.Finally,some experimental results show that the proposed randomized algorithms can achieve a good accuracy with less computational cost and storage requirement. 展开更多
关键词 Generalized singular value decomposition Randomized algorithm low-rank approximation Error analysis
下载PDF
Electrical Data Matrix Decomposition in Smart Grid 被引量:1
2
作者 Qian Dang Huafeng Zhang +3 位作者 Bo Zhao Yanwen He Shiming He Hye-Jin Kim 《Journal on Internet of Things》 2019年第1期1-7,共7页
As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry ... As the development of smart grid and energy internet, this leads to a significantincrease in the amount of data transmitted in real time. Due to the mismatch withcommunication networks that were not designed to carry high-speed and real time data,data losses and data quality degradation may happen constantly. For this problem,according to the strong spatial and temporal correlation of electricity data which isgenerated by human’s actions and feelings, we build a low-rank electricity data matrixwhere the row is time and the column is user. Inspired by matrix decomposition, we dividethe low-rank electricity data matrix into the multiply of two small matrices and use theknown data to approximate the low-rank electricity data matrix and recover the missedelectrical data. Based on the real electricity data, we analyze the low-rankness of theelectricity data matrix and perform the Matrix Decomposition-based method on the realdata. The experimental results verify the efficiency and efficiency of the proposed scheme. 展开更多
关键词 Electrical data recovery matrix decomposition low-rankness smart grid
下载PDF
Generalized Nonconvex Low-Rank Algorithm for Magnetic Resonance Imaging (MRI) Reconstruction
3
作者 吴新峰 刘且根 +2 位作者 卢红阳 龙承志 王玉皞 《Journal of Donghua University(English Edition)》 EI CAS 2017年第2期316-321,共6页
In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic r... In recent years,utilizing the low-rank prior information to construct a signal from a small amount of measures has attracted much attention.In this paper,a generalized nonconvex low-rank(GNLR) algorithm for magnetic resonance imaging(MRI)reconstruction is proposed,which reconstructs the image from highly under-sampled k-space data.In the algorithm,the nonconvex surrogate function replacing the conventional nuclear norm is utilized to enhance the low-rank property inherent in the reconstructed image.An alternative direction multiplier method(ADMM) is applied to solving the resulting non-convex model.Extensive experimental results have demonstrated that the proposed method can consistently recover MRIs efficiently,and outperforms the current state-of-the-art approaches in terms of higher peak signal-to-noise ratio(PSNR) and lower high-frequency error norm(HFEN) values. 展开更多
关键词 magnetic resonance imaging(MRI) low-rank approximation nonconvex optimization alternative direction multiplier method(ADMM)
下载PDF
Parallel Active Subspace Decomposition for Tensor Robust Principal Component Analysis
4
作者 Michael K.Ng Xue-Zhong Wang 《Communications on Applied Mathematics and Computation》 2021年第2期221-241,共21页
Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computati... Tensor robust principal component analysis has received a substantial amount of attention in various fields.Most existing methods,normally relying on tensor nuclear norm minimization,need to pay an expensive computational cost due to multiple singular value decompositions at each iteration.To overcome the drawback,we propose a scalable and efficient method,named parallel active subspace decomposition,which divides the unfolding along each mode of the tensor into a columnwise orthonormal matrix(active subspace)and another small-size matrix in parallel.Such a transformation leads to a nonconvex optimization problem in which the scale of nuclear norm minimization is generally much smaller than that in the original problem.We solve the optimization problem by an alternating direction method of multipliers and show that the iterates can be convergent within the given stopping criterion and the convergent solution is close to the global optimum solution within the prescribed bound.Experimental results are given to demonstrate that the performance of the proposed model is better than the state-of-the-art methods. 展开更多
关键词 Principal component analysis low-rank tensors Nuclear norm minimization Active subspace decomposition Matrix factorization
下载PDF
A Perturbation Analysis of Low-Rank Matrix Recovery by Schatten p-Minimization
5
作者 Zhaoying Sun Huimin Wang Zhihui Zhu 《Journal of Applied Mathematics and Physics》 2024年第2期475-487,共13页
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with... A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP. 展开更多
关键词 nonconvex Schatten p-Norm low-rank Matrix Recovery p-Null Space Property the Restricted Isometry Property
下载PDF
Accurate simulations of pure-viscoacoustic wave propagation in tilted transversely isotropic media 被引量:1
6
作者 Qiang Mao Jian-Ping Huang +2 位作者 Xin-Ru Mu Ji-Dong Yang Yu-Jian Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期866-884,共19页
Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and ... Forward modeling of seismic wave propagation is crucial for the realization of reverse time migration(RTM) and full waveform inversion(FWI) in attenuating transversely isotropic media. To describe the attenuation and anisotropy properties of subsurface media, the pure-viscoacoustic anisotropic wave equations are established for wavefield simulations, because they can provide clear and stable wavefields. However, due to the use of several approximations in deriving the wave equation and the introduction of a fractional Laplacian approximation in solving the derived equation, the wavefields simulated by the previous pure-viscoacoustic tilted transversely isotropic(TTI) wave equations has low accuracy. To accurately simulate wavefields in media with velocity anisotropy and attenuation anisotropy, we first derive a new pure-viscoacoustic TTI wave equation from the exact complex-valued dispersion formula in viscoelastic vertical transversely isotropic(VTI) media. Then, we present the hybrid finite-difference and low-rank decomposition(HFDLRD) method to accurately solve our proposed pure-viscoacoustic TTI wave equation. Theoretical analysis and numerical examples suggest that our pure-viscoacoustic TTI wave equation has higher accuracy than previous pure-viscoacoustic TTI wave equations in describing q P-wave kinematic and attenuation characteristics. Additionally, the numerical experiment in a simple two-layer model shows that the HFDLRD technique outperforms the hybrid finite-difference and pseudo-spectral(HFDPS) method in terms of accuracy of wavefield modeling. 展开更多
关键词 Pure-viscoacoustic TTI wave equation Attenuation anisotropy Seismic modeling low-rank decomposition method
下载PDF
Fast nonnegative tensor ring decomposition based on the modulus method and low-rank approximation
7
作者 YU YuYuan XIE Kan +2 位作者 YU JinShi JIANG Qi XIE ShengLi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第9期1843-1853,共11页
Nonnegative tensor ring(NTR) decomposition is a powerful tool for capturing the significant features of tensor objects while preserving the multi-linear structure of tensor data. The existing algorithms rely on freque... Nonnegative tensor ring(NTR) decomposition is a powerful tool for capturing the significant features of tensor objects while preserving the multi-linear structure of tensor data. The existing algorithms rely on frequent reshaping and permutation operations in the optimization process and use a shrinking step size or projection techniques to ensure core tensor nonnegativity, which leads to a slow convergence rate, especially for large-scale problems. In this paper, we first propose an NTR algorithm based on the modulus method(NTR-MM), which constrains core tensor nonnegativity by modulus transformation. Second, a low-rank approximation(LRA) is introduced to NTR-MM(named LRA-NTR-MM), which not only reduces the computational complexity of NTR-MM significantly but also suppresses the noise. The simulation results demonstrate that the proposed LRA-NTR-MM algorithm achieves higher computational efficiency than the state-of-the-art algorithms while preserving the effectiveness of feature extraction. 展开更多
关键词 nonnegative tensor ring decomposition modulus method low-rank approximation
原文传递
求非凸二次规划全局最优解的分解线性化方法 被引量:3
8
作者 申培萍 裴永刚 顾敏娜 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期128-130,共3页
对非凸二次规划(QP)问题提出新的确定性全局优化算法,该算法先对目标函数进行分解得到可分的等价问题,再根据相应函数的线性下估计建立原非凸二次规划的线性松弛规划,同时在分枝定界方法中使用区域删减准则来加速算法的收敛性.理论分析... 对非凸二次规划(QP)问题提出新的确定性全局优化算法,该算法先对目标函数进行分解得到可分的等价问题,再根据相应函数的线性下估计建立原非凸二次规划的线性松弛规划,同时在分枝定界方法中使用区域删减准则来加速算法的收敛性.理论分析和数值计算表明提出的算法是收敛且有效的. 展开更多
关键词 非凸二次规划 分解线性化 区域删减 分枝定界
下载PDF
LMD与非凸罚最小化L_q正则子压缩传感的轴承振动信号重建 被引量:1
9
作者 李庆 宋万清 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第10期3696-3702,共7页
针对机械振动信号高速传输、大容量长期实时存储问题,提出一种局部均值分解(LMD)与非凸罚最小化Lq正则子压缩传感(CS)相结合的轴承故障振动信号重建方法。该方法利用振动系统信号采样、压缩合并进行的思想,首先通过LMD把振动信号分解为... 针对机械振动信号高速传输、大容量长期实时存储问题,提出一种局部均值分解(LMD)与非凸罚最小化Lq正则子压缩传感(CS)相结合的轴承故障振动信号重建方法。该方法利用振动系统信号采样、压缩合并进行的思想,首先通过LMD把振动信号分解为若干个不同频率分量的乘积函数平稳信号,对不同的频段分量寻求最佳的稀疏基,构建基于随机高斯矩阵的高度欠定方程;然后求解合适的压缩比,应用非凸罚最小化Lq正则子(q=0.5)算法重构,对所有重构信号组合得到原始振动信号。研究结果表明:LMD与非凸罚最小化Lq正则子压缩传感相结合的方法提高了轴承振动信号的重构精度,降低了重构计算复杂度,具有更高的处理速度和运行效率。 展开更多
关键词 局部均值分解 非凸罚最小化Lq 压缩传感 振动信号 信号重建
下载PDF
基于最优D.C.分解的单二次约束非凸二次规划精确算法 被引量:2
10
作者 郑小金 《运筹学学报》 CSCD 2009年第3期111-118,共8页
本文提出一种基于最优D.C.分解的单二次约束非凸二次规划精确算法.本文首先对非凸二次目标函数进行D.C.分解,然后对D.C.分解中凹的部分进行线性下逼近得到一个凸二次松弛问题.本文证明了最优D.C.分解可通过求解一个半定规划问题得到,而... 本文提出一种基于最优D.C.分解的单二次约束非凸二次规划精确算法.本文首先对非凸二次目标函数进行D.C.分解,然后对D.C.分解中凹的部分进行线性下逼近得到一个凸二次松弛问题.本文证明了最优D.C.分解可通过求解一个半定规划问题得到,而原问题的最优解可以通过计算最优凸二次松弛问题的满足某种互补条件的解得到.最后,本文报告了初步数值计算结果. 展开更多
关键词 运筹学 单二次约束非凸二次规划问题 最优D.C.分解 半定规划 精确算法
下载PDF
基于非凸矩阵分解的电网欺骗性数据注入攻击检测方法 被引量:11
11
作者 陈雄欣 罗萍萍 苑开波 《现代电力》 北大核心 2020年第3期263-269,共7页
电力系统状态估计中的量测数据容易受到欺骗性数据注入攻击的恶意篡改,使状态估计的稳定性受到影响。根据量测数据在连续时间段内的低维特性以及欺骗性数据攻击的稀疏特性,提出了一种基于非凸矩阵分解的电网欺骗性数据注入攻击检测方法... 电力系统状态估计中的量测数据容易受到欺骗性数据注入攻击的恶意篡改,使状态估计的稳定性受到影响。根据量测数据在连续时间段内的低维特性以及欺骗性数据攻击的稀疏特性,提出了一种基于非凸矩阵分解的电网欺骗性数据注入攻击检测方法。首先,将欺骗性数据注入攻击的检测问题视为稀疏低秩矩阵分解问题,并将分解问题转化为非凸优化问题,通过改进的交替方向乘子法求解此非凸问题,将受攻击的数据矩阵分解为正常量测矩阵和攻击矩阵;其次,利用分解出的攻击矩阵检测出欺骗性数据注入攻击的数值和位置,并以分解出的正常量测矩阵作为参考量测量,进行状态估计获得正确的状态变量;最后,通过IEEE-14节点系统分析了不同攻击幅值下的检测结果,验证了所提方法的准确性。 展开更多
关键词 状态估计 欺骗性数据注入攻击 非凸矩阵分解 改进交替方向乘子法
下载PDF
FAST ALGORITHMS FOR HIGHER-ORDER SINGULAR VALUE DECOMPOSITION FROM INCOMPLETE DATA 被引量:1
12
作者 Yangyang Xu 《Journal of Computational Mathematics》 SCIE CSCD 2017年第4期397-422,共26页
Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of the... Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of them involve incomplete data. To obtain HOSVD of the data with missing values, one can first impute the missing entries through a certain tensor completion method and then perform HOSVD to the reconstructed data. However, the two-step procedure can be inefficient and does not make reliable decomposition. In this paper, we formulate an incomplete HOSVD problem and combine the two steps into solving a single optimization problem, which simultaneously achieves imputation of missing values and also tensor decomposition. We also present one algorithm for solving the problem based on block coordinate update (BCU). Global convergence of the algorithm is shown under mild assumptions and implies that of the popular higher-order orthogonality iteration (HOOI) method, and thus we, for the first time, give global convergence of HOOI. In addition, we compare the proposed method to state-of-the-art ones for solving incom- plete HOSVD and also low-rank tensor completion problems and demonstrate the superior performance of our method over other compared ones. Furthermore, we apply it to face recognition and MRI image reconstruction to show its practical performance. 展开更多
关键词 multilinear data analysis higher-order singular value decomposition (HOSVD) low-rank tensor completion non-convex optimization higher-order orthogonality iteration(HOOI) global convergence.
原文传递
基于DC分解的非凸二次规划SDP近似解
13
作者 王延菲 郑小金 《应用数学与计算数学学报》 2009年第2期102-110,共9页
本文提出一类基于DC分解的非凸二次规划问题SDP松弛方法,并通过求解一个二阶锥问题得到原问题的近似最优解.我们首先对非凸二次目标函数进行DC分解,然后利用线性下逼近得到一个凸二次松弛问题,而最优的DC分解可通过求解一个SDP问题得到... 本文提出一类基于DC分解的非凸二次规划问题SDP松弛方法,并通过求解一个二阶锥问题得到原问题的近似最优解.我们首先对非凸二次目标函数进行DC分解,然后利用线性下逼近得到一个凸二次松弛问题,而最优的DC分解可通过求解一个SDP问题得到.数值试验表明,基于DC分解的SDP近似解平均优于经典SDP松弛和随机化方法产生的近似解。 展开更多
关键词 非凸二次规划问题 凸二次约束 SDP松弛 DC分解方法 随机化方法
下载PDF
Linear low-rank approximation and nonlinear dimensionality reduction 被引量:2
14
作者 ZHANG Zhenyue & ZHA Hongyuan Department of Mathematics, Zhejiang University, Yuquan Campus, Hangzhou 310027, China Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA 16802, U.S.A. 《Science China Mathematics》 SCIE 2004年第6期908-920,共13页
We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank appr... We present our recent work on both linear and nonlinear data reduction methods and algorithms: for the linear case we discuss results on structure analysis of SVD of columnpartitioned matrices and sparse low-rank approximation; for the nonlinear case we investigate methods for nonlinear dimensionality reduction and manifold learning. The problems we address have attracted great deal of interest in data mining and machine learning. 展开更多
关键词 singular value decomposition low-rank approximation sparse matrix nonlinear dimensionality reduction principal manifold subspace alignment data mining
原文传递
基于非凸低秩分解判别的叠加线性稀疏人脸识别 被引量:9
15
作者 叶学义 罗宵晗 +1 位作者 王鹏 陈慧云 《中国图象图形学报》 CSCD 北大核心 2019年第8期1327-1337,共11页
目的针对因采集的人脸图像样本受到污染而严重干扰人脸识别及训练样本较少(小样本)时会由于错误的稀疏系数导致性能急剧下降从而影响人脸识别的问题,提出了一种基于判别性非凸低秩矩阵分解的叠加线性稀疏表示算法。方法首先由γ范数取... 目的针对因采集的人脸图像样本受到污染而严重干扰人脸识别及训练样本较少(小样本)时会由于错误的稀疏系数导致性能急剧下降从而影响人脸识别的问题,提出了一种基于判别性非凸低秩矩阵分解的叠加线性稀疏表示算法。方法首先由γ范数取代传统核范数,克服了传统低秩矩阵分解方法求解核范数时因矩阵奇异值倍数缩放导致的识别误差问题;然后引入结构不相干判别项,以增加不同类低秩字典间的非相干性,达到抑制类内变化和去除类间相关性的目的;最后利用叠加线性稀疏表示方法完成分类。结果所提算法在AR人脸库中的识别率达到了98. 67±0. 57%,高于SRC(sparse representation-based classification)、ESRC(extended SRC)、RPCA(robust principal component analysis)+SRC、LRSI (low rank matrix decomposition with structural incoherence)、SLRC (superposed linear representation based classification)-l1等算法;同时,遮挡实验表明,算法对遮挡图像具有更好的鲁棒性,在不同遮挡比例下,相比其他算法均有更高的识别率。在CMU PIE人脸库中,对无遮挡图像添加0、10%、20%、30%、40%的椒盐噪声,算法识别率分别达到90. 1%、85. 5%、77. 8%、65. 3%和46. 1%,均高于其他算法。结论不同人脸库、不同比例遮挡和噪声的实验结果表明,所提算法针对人脸遮挡、表情和光照等噪声因素依然保持较高的识别率,鲁棒性更好。 展开更多
关键词 人脸识别 非凸低秩矩阵分解 结构不相干 叠加线性稀疏表示(SLRC) 字典学习 主成分分析(PCA)
原文传递
非凸加权核范数及其在运动目标检测中的应用 被引量:4
16
作者 周宗伟 金忠 《中国图象图形学报》 CSCD 北大核心 2015年第11期1482-1491,共10页
目的近年来,低秩矩阵分解被越来越多的应用到运动目标检测中。但该类方法一般将矩阵秩函数松弛为矩阵核函数优化,导致背景恢复精度不高;并且没有考虑到前景目标的先验知识,即区域连续性。为此提出一种结合非凸加权核范数和前景目标区域... 目的近年来,低秩矩阵分解被越来越多的应用到运动目标检测中。但该类方法一般将矩阵秩函数松弛为矩阵核函数优化,导致背景恢复精度不高;并且没有考虑到前景目标的先验知识,即区域连续性。为此提出一种结合非凸加权核范数和前景目标区域连续性的目标检测算法。方法本文提出的运动目标检测模型以鲁棒主成分分析(RPCA)作为基础,在该基础上采用矩阵非凸核范数取代传统的核范数逼近矩阵低秩约束,并结合了前景目标区域连续性的先验知识。该方法恢复出的低秩矩阵即为背景图像矩阵,而稀疏大噪声矩阵则是前景目标位置矩阵。结果无论是在仿真数据集还是在真实数据集上,本文方法都能够取得比其他低秩类方法更好的效果。在不同数据集上,该方法相对于RPCA方法,前景目标检测性能提升25%左右,背景恢复误差降低0.5左右;而相对于DECOLOR方法,前景目标检测性能提升约2%左右,背景恢复误差降低0.2左右。结论矩阵秩函数的非凸松弛能够比凸松弛更准确的表征出低秩特征,从而在运动目标检测应用中更准确的恢复出背景。前景目标的区域连续性先验知识能够有效地过滤掉非目标大噪声产生的影响,使得较运动目标检测的精度得到大幅提高。因此,本文方法在动态纹理背景、光照渐变等较复杂场景中均能够较精确地检测出运动目标区域。但由于区域连续性的要求,本文方法对于小区域多目标的检测效果不甚理想。 展开更多
关键词 运动目标检测 低秩矩阵分解 非凸加权核范数 区域连续性 矩阵恢复
原文传递
Modeling the Correlations of Relations for Knowledge Graph Embedding 被引量:8
17
作者 Ji-Zhao Zhu Yan-Tao Jia +2 位作者 Jun Xu Jian-Zhong Qiao Xue-Qi Cheng 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第2期323-334,共12页
Knowledge graph embedding, which maps the entities and relations into low-dimensional vector spaces, has demonstrated its effectiveness in many tasks such as link prediction and relation extraction. Typical methods in... Knowledge graph embedding, which maps the entities and relations into low-dimensional vector spaces, has demonstrated its effectiveness in many tasks such as link prediction and relation extraction. Typical methods include TransE, TransH, and TransR. All these methods map different relations into the vector space separately and the intrinsic correlations of these relations are ignored. It is obvious that there exist some correlations among relations because different relations may connect to a common entity. For example, the triples (Steve Jobs, PlaceOfBrith, California) and (Apple Inc., Location, California) share the same entity California as their tail entity. We analyze the embedded relation matrices learned by TransE/TransH/TransR, and find that the correlations of relations do exist and they are showed as low-rank structure over the embedded relation matrix. It is natural to ask whether we can leverage these correlations to learn better embeddings for the entities and relations in a knowledge graph. In this paper, we propose to learn the embedded relation matrix by decomposing it as a product of two low-dimensional matrices, for characterizing the low-rank structure. The proposed method, called TransCoRe (Translation-Based Method via Modeling the Correlations of Relations), learns the embeddings of entities and relations with translation-based framework. Experimental results based on the benchmark datasets of WordNet and Freebase demonstrate that our method outperforms the typical baselines on link prediction and triple classification tasks. 展开更多
关键词 knowledge graph embedding low-rank matrix decomposition
原文传递
基于非凸加权核范数的目标视频帧选取 被引量:1
18
作者 马晓迪 胡晓渭 +1 位作者 王思诗 张军 《数学的实践与认识》 北大核心 2018年第15期201-209,共9页
主要研究的是基于监控视频的显著前景目标帧选取问题.首先利用非凸加权核范数进行低秩背景估计.然后使用Markov随机场对稀疏前景目标位置矩阵进行估计,并提取出前景目标.最后定义显著前景目标区域,根据连通域面积大小,采用阈值法... 主要研究的是基于监控视频的显著前景目标帧选取问题.首先利用非凸加权核范数进行低秩背景估计.然后使用Markov随机场对稀疏前景目标位置矩阵进行估计,并提取出前景目标.最后定义显著前景目标区域,根据连通域面积大小,采用阈值法判断当前帧是否为显著目标帧,并采用F值来验证该模型的准确率.结果显示,模型在Campus、Curtain、Escalator、Fountain、Hall、Lobby和O伍ce这7个数据集上的F值均超过90%,说明该模型普遍具有较高的鲁棒性和准确性. 展开更多
关键词 低秩分解 非凸加权核范数 连通域标记 阈值法
原文传递
Mobile phone recognition method based on bilinear convolutional neural network 被引量:3
19
作者 HAN HongGui ZHEN Qi +2 位作者 YANG HongYan DU YongPing QIAO JunFei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第11期2477-2484,共8页
Model recognition of second-hand mobile phones has been considered as an essential process to improve the efficiency of phone recycling. However, due to the diversity of mobile phone appearances, it is difficult to re... Model recognition of second-hand mobile phones has been considered as an essential process to improve the efficiency of phone recycling. However, due to the diversity of mobile phone appearances, it is difficult to realize accurate recognition. To solve this problem, a mobile phone recognition method based on bilinear-convolutional neural network(B-CNN) is proposed in this paper.First, a feature extraction model, based on B-CNN, is designed to adaptively extract local features from the images of secondhand mobile phones. Second, a joint loss function, constructed by center distance and softmax, is developed to reduce the interclass feature distance during the training process. Third, a parameter downscaling method, derived from the kernel discriminant analysis algorithm, is introduced to eliminate redundant features in B-CNN. Finally, the experimental results demonstrate that the B-CNN method can achieve higher accuracy than some existing methods. 展开更多
关键词 bilinear convolutional neural network low-rank decomposition joint loss fine-grained image recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部